40 resultados para Hamming Cube
Resumo:
In this paper we describe CubIT, a multi-user presentation and collaboration system installed at the Queensland University of Technology’s (QUT) Cube facility. The ‘Cube’ is an interactive visualisation facility made up of five very large-scale interactive multi-panel wall displays, each consisting of up to twelve 55-inch multi-touch screens (48 screens in total) and massive projected display screens situated above the display panels. The paper outlines the unique design challenges, features, implementation and evaluation of CubIT. The system was built to make the Cube facility accessible to QUT’s academic and student population. CubIT enables users to easily upload and share their own media content, and allows multiple users to simultaneously interact with the Cube’s wall displays. The features of CubIT were implemented via three user interfaces, a multi-touch interface working on the wall displays, a mobile phone and tablet application and a web-based content management system. Each of these interfaces plays a different role and offers different interaction mechanisms. Together they support a wide range of collaborative features including multi-user shared workspaces, drag and drop upload and sharing between users, session management and dynamic state control between different parts of the system. The results of our evaluation study showed that CubIT was successfully used for a variety of tasks, and highlighted challenges with regards to user expectations regarding functionality as well as issues arising from public use.
Resumo:
Our contemporary concerns about food range from food security to agricultural sustainability to getting dinner on the table for family and friends. This book investigates food issues as they intersect with participatory Internet culture--blogs, wikis, online photo- and video-sharing platforms, and social networks in efforts to bring about a healthy, socially inclusive, and sustainable food future. Focusing on our urban environments provisioned with digital and network capacities, and drawing on such "bottom-up" sociotechnical trends as DIY and open source, the chapters describe engagements with food and technology that engender (re-)creative interactions.
Resumo:
In this paper we present an original approach for finding approximate nearest neighbours in collections of locality-sensitive hashes. The paper demonstrates that this approach makes high-performance nearest-neighbour searching feasible on Web-scale collections and commodity hardware with minimal degradation in search quality.
Resumo:
This proposal describes the innovative and competitive lunar payload solution developed at the Queensland University of Technology (QUT)–the LunaRoo: a hopping robot designed to exploit the Moon's lower gravity to leap up to 20m above the surface. It is compact enough to fit within a 10cm cube, whilst providing unique observation and mission capabilities by creating imagery during the hop. This first section is deliberately kept short and concise for web submission; additional information can be found in the second chapter.
Resumo:
This research proposes a multi-dimensional model for Opinion Mining, which integrates customers' characteristics and their opinions about products (or services). Customer opinions are valuable for companies to deliver right products or services to their customers. This research presents a comprehensive framework to evaluate opinions' orientation based on products' hierarchy attributes. It also provides an alternative way to obtain opinion summaries for different groups of customers and different categories of produces.
Resumo:
In this paper we analyse two variants of SIMON family of light-weight block ciphers against variants of linear cryptanalysis and present the best linear cryptanalytic results on these variants of reduced-round SIMON to date. We propose a time-memory trade-off method that finds differential/linear trails for any permutation allowing low Hamming weight differential/linear trails. Our method combines low Hamming weight trails found by the correlation matrix representing the target permutation with heavy Hamming weight trails found using a Mixed Integer Programming model representing the target differential/linear trail. Our method enables us to find a 17-round linear approximation for SIMON-48 which is the best current linear approximation for SIMON-48. Using only the correlation matrix method, we are able to find a 14-round linear approximation for SIMON-32 which is also the current best linear approximation for SIMON-32. The presented linear approximations allow us to mount a 23-round key recovery attack on SIMON-32 and a 24-round Key recovery attack on SIMON-48/96 which are the current best results on SIMON-32 and SIMON-48. In addition we have an attack on 24 rounds of SIMON-32 with marginal complexity.
Resumo:
This thesis studies document signatures, which are small representations of documents and other objects that can be stored compactly and compared for similarity. This research finds that document signatures can be effectively and efficiently used to both search and understand relationships between documents in large collections, scalable enough to search a billion documents in a fraction of a second. Deliverables arising from the research include an investigation of the representational capacity of document signatures, the publication of an open-source signature search platform and an approach for scaling signature retrieval to operate efficiently on collections containing hundreds of millions of documents.
Resumo:
A perfectly plastic von Mises model is proposed to study the elastic-plastic behavior of a porous hierarchical scaffold used for bone regeneration. The proposed constitutive model is implemented in a finite element (FE) routine to obtain the stress-strain relationship of a uniaxially loaded cube of the scaffold, whose constituent is considered to be composed of cortical bone. The results agree well with experimental data for uniaxial loading case of a cancellous bone. We find that the unhomogenized stress distribution results in different mechanical properties from but still comparable to our previous theory. The scaffold is a promising candidate for bone regeneration.
Resumo:
First year medical laboratory science students (up to 120) undertake a group e-poster project, based in a blended learning model Google Drive, encompassing Google’s cloud computing software, provides a readily accessible, transparent online space for students to collaborate with each other and realise tangible outcomes from their learning The Cube provides an inspiring digital learning display space for student ‘conference style’ presentations
Resumo:
Building on the launch of an early prototype at Balance Unbalance 2013, we now offer a fully realised experience of the ‘Long Time, No See?’ site specific walking/visualisation project for conference users to engage with on a do it yourself basis, either before, during or after the event. ‘Long Time, No See?’ is a new form of participatory, environmental futures project, designed for individuals and groups. It uses a smartphone APP to guide processes of individual or group walking at any chosen location—encouraging walkers to think in radical new ways about how to best prepare for ‘stormy’ environmental futures ahead. As part of their personal journeys participants’ contribute site-specific micro narratives in the form of texts, images and sounds, captured via the APP during the loosely ‘guided’ walk. These responses are then uploaded and synthesised into an ever-building audiovisual and generative artwork/‘map’ of future-thinking affinities, viewable both online at long-time-no-see.org (in Chrome) (and at the same time on a large screen visualisations at QUT’s Cube Centre in Brisbane Australia). The artwork therefore spans both participants’ mobile devices and laptops. If desired outcomes can also be presented publicly in large screen format at the conference. ‘Long Time, No See?’ has been developed over the past two years by a team of leading Australian artists, designers, urban/environmental planners and programmers.