128 resultados para CYCLOPENTADIENYL LIGAND
Resumo:
Ghrelin was first identified in 1999 by Kojima and colleagues (Kojima et al. 1999) as the natural ligand of an orphan G-protein coupled receptor, the Growth Hormone (GH) secretagogue receptor (GHS-R), which had been identified several years earlier through the actions of a growing number of synthetic growth hormone releasing peptides (GHRPs) and non-peptidyl GH secretagogues (Howard et al. 1996). Early studies, therefore, focussed on the actions of ghrelin as an important regulator of GH secretion. As a result Kojima et al (1999) designated this GH-releasing peptide, ghrelin (ghre is the Proto-Indo-European root of the word 'grow'). We now recognise that the functions of ghrelin extend well beyond its GH releasing actions and that it is a multi-functional peptide with both endocrine and autocrine/paracrine modes of action.
Resumo:
Ghrelin is a peptide hormone that was originally isolated from the stomach as the endogenous ligand for the growth hormone secretagogue receptor (GHSR). Ghrelin has many functions, including the regulation of appetite and gut motility, growth hormone release from the anterior pituitary and roles in the cardiovascular and immune systems. Ghrelin and its receptor are expressed in a number of cancers and cancer cell lines and may play a role in processes associated with cancer progression, including cell proliferation, apoptosis, and cell invasion and migration.
Resumo:
In the title compound, [Li(C14H36N2PSi2)(C5H5N)2], the bulky chelating monoanionic P,P-di-tert-butyl-N-trimethylsilyl-P-(trimethylsilylamino)phosphine imidate ligand and two pyridine ligands bind to Li in a pseudo-tetrahedral arrangement with twofold symmetry. The Li-N [phosphine]distance is 2.048 (5) Å, while the LiP distance is 2.520 (6) Å
Resumo:
Uncontrolled fibroblast growth factor (FGF) signaling can lead to human diseases, necessitating multiple layers of self-regulatory control mechanisms to keep its activity in check. Herein, we demonstrate that FGF9 and FGF20 ligands undergo a reversible homodimerization, occluding their key receptor binding sites. To test the role of dimerization in ligand autoinhibition, we introduced structure-based mutations into the dimer interfaces of FGF9 and FGF20. The mutations weakened the ability of the ligands to dimerize, effectively increasing the concentrations of monomeric ligands capable of binding and activating their cognate FGF receptor in vitro and in living cells. Interestingly, the monomeric ligands exhibit reduced heparin binding, resulting in their increased radii of heparan sulfate-dependent diffusion and biologic action, as evidenced by the wider dilation area of ex vivo lung cultures in response to implanted mutant FGF9-loaded beads. Hence, our data demonstrate that homodimerization autoregulates FGF9 and FGF20's receptor binding and concentration gradients in the extracellular matrix. Our study is the first to implicate ligand dimerization as an autoregulatory mechanism for growth factor bioactivity and sets the stage for engineering modified FGF9 subfamily ligands, with desired activity for use in both basic and translational research.
Resumo:
We report that 10% of melanoma tumors and cell lines harbor mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. These novel mutations include three truncating mutations and 20 missense mutations occurring at evolutionary conserved residues in FGFR2 as well as among all four FGFRs. The mutation spectrum is characteristic of those induced by UV radiation. Mapping of these mutations onto the known crystal structures of FGFR2 followed by in vitro and in vivo studies show that these mutations result in receptor loss of function through several distinct mechanisms, including loss of ligand binding affinity, impaired receptor dimerization, destabilization of the extracellular domains, and reduced kinase activity. To our knowledge, this is the first demonstration of loss-of-function mutations in a class IV receptor tyrosine kinase in cancer. Taken into account with our recent discovery of activating FGFR2 mutations in endometrial cancer, we suggest that FGFR2 may join the list of genes that play context-dependent opposing roles in cancer.
Resumo:
Heparan sulfate (HS) is a linear, highly variable, highly sulfated glycosaminoglycan sugar whose biological activity largely depends on internal sulfated domains that mediate specific binding to an extensive range of proteins. In this study we employed anion exchange chromatography, molecular sieving and enzymatic cleavage on HS fractions purified from three compartments of cultured osteoblasts-soluble conditioned media, cell surface, and extracellular matrix (ECM). We demonstrate that the composition of HS chains purified from the different compartments is structurally non-identical by a number of parameters, and that these differences have significant ramifications for their ligand-binding properties. The HS chains purified of conditioned medium had twice the binding affinity for FGF2 when compared with either cell surface or ECM HS. In contrast, similar binding of BMP2 to the three types of HS was observed. These results suggest that different biological compartments of cultured cells have structurally and functionally distinct HS species that help to modulate the flow of HS-dependent factors between the ECM and the cell surface.
Resumo:
Although molecularly targeted therapies have been effective in some cancer types, no targeted therapy is approved for use in endometrial cancer. The recent identification of activating mutations in fibroblast growth factor receptor 2 (FGFR2) in endometrial tumors has generated a new avenue for the development of targeted therapeutic agents. The majority of the mutations identified are identical to germline mutations in FGFR2 and FGFR3 that cause craniosynostosis and hypochondroplasia syndromes and result in both ligand-independent and ligand-dependent receptor activation. Mutations that predominantly occur in the endometrioid subtype of endometrial cancer, are mutually exclusive with KRAS mutation, but occur in the presence of PTEN abrogation. In vitro studies have shown that endometrial cancer cell lines with activating FGFR2 mutations are selectively sensitive to a pan-FGFR inhibitor, PD173074. Several agents with activity against FGFRs are currently in clinical trials. Investigation of these agents in endometrial cancer patients with activating FGFR2 mutations is warranted.
Resumo:
Dye-sensitised solar cells have emerged as an important developing technology for low-cost solar energy conversion and a crucial element of these is the dye, responsible for light harvesting and control of interfacial electron-transfer processes.[1] A number of examples of dye exist in the literature which link a ruthenium polypyridyl complex to another platinum group metal complex such as Ru (II), Os (II), Re (I) or Rh (III) via a bridging ligand.[2-6] These systems are often referred to as heterosupramolecular triads when adsorbed on the surface of TiO2 as the semiconductor becomes an active component in the system. A number of problems can arise with these types of sensitisers, for example if a flexible linker, e.g. bis-pyridylethane, is used to couple the two complexes it can be hard to control the orientation of the whole dye. This may lead to the resultant dye cation hole being closer to the surface than desired, and hence the long-lived charge-separated state is not achieved. In addition the size of these dyes may be much larger than that of a mononuclear complex and can lead to poor pore filling on the TiO2 and lower dye coverage, leading to a lower efficiency cell.[7] Despite these issues, efficient charge-separation has been achieved with polynuclear complexes and a long-lived state on the millisecond timescale has been observed for a trinuclear ruthenium complex.[8]
Resumo:
A simple and efficient route for the synthesis of cyclic polymer systems is presented. Linear furan protected α-maleimide-ω-cyclopentadienyl functionalized precursors (poly(methyl methacrylate) and poly(tert-butyl acrylate)) were synthesized via atom transfer radical polymerization (ATRP) and subsequent substitution of the bromine end-group with cyclopentadiene. Upon heating at high dilution, deprotection of the dieneophile occurs followed by an intramolecular Diels–Alder reaction yielding a high purity cyclic product.
Resumo:
With the advent of live cell imaging microscopy, new types of mathematical analyses and measurements are possible. Many of the real-time movies of cellular processes are visually very compelling, but elementary analysis of changes over time of quantities such as surface area and volume often show that there is more to the data than meets the eye. This unit outlines a geometric modeling methodology and applies it to tubulation of vesicles during endocytosis. Using these principles, it has been possible to build better qualitative and quantitative understandings of the systems observed, as well as to make predictions about quantities such as ligand or solute concentration, vesicle pH, and membrane trafficked. The purpose is to outline a methodology for analyzing real-time movies that has led to a greater appreciation of the changes that are occurring during the time frame of the real-time video microscopy and how additional quantitative measurements allow for further hypotheses to be generated and tested.
Resumo:
Background: The most common functional single nucleotide polymorphism of the human OPRM1 gene, A118G, has been shown to be associated with interindividual differences in opioid analgesic requirements, particularly with morphine, in patients with acute postoperative pain. The purpose of this study was to examine whether this polymorphism would modulate the morphine and fentanyl pharmacological profile of sensory neurons isolated from a humanized mouse model homozygous for either the 118A or 118G allele. Methods: The coupling of wild-type and mutant μ opioid receptors to voltage-gated Ca channels after exposure to either ligand was examined by employing the whole cell variant of the patch-clamp technique in acutely dissociated trigeminal ganglion neurons. Morphine-mediated antinociception was measured in mice carrying either the 118AA or 118GG allele. RESULTS:: The biophysical parameters (cell size, current density, and peak current amplitude potential) measured from both groups of sensory neurons were not significantly different. In 118GG neurons, morphine was approximately fivefold less potent and 26% less efficacious than that observed in 118AA neurons. On the other hand, the potency and efficacy of fentanyl were similar for both groups of neurons. Morphine-mediated analgesia in 118GG mice was significantly reduced compared with the 118AA mice. Conclusions: This study provides evidence to suggest that the diminished clinical effect observed with morphine in 118G carriers results from an alteration of the receptor's pharmacology in sensory neurons. In addition, the impaired analgesic response with morphine may explain why carriers of this receptor variant have an increased susceptibility to become addicted to opioids. © 2011 the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins. Anesthesiology.
Resumo:
The preparation of a series of nickel dichloride complexes with bulky diphosphinomethane chelate ligands R2PCH2PR′2 is reported. Reaction with the appropriate Grignard reagent leads to the corresponding dimethyl and dibenzyl complexes. Cationic monomethyl and mono-η3-benzyl complexes are generated from these dialkyl complexes by protonation with [H(OEt2)2]+[B(3,5-(CF3)2C6H3)4]−, while the complex [(dtbpm κ2P)Ni(η3-CH(CH2Ph)Ph]+[B(3,5-(CF3)2C6H3)4]−is obtained from protonation of the Ni(0) olefin complex (dtbpm-κ2P)N(η2-trans-stilbene). Crystal structures of examples of dichlorides, dimethyl, dibenzyl, cationic methyl, and cationic η3-benzyl complexes are reported. Solutions of the cations polymerize ethylene under mild conditions and without the necessity of an activating agent, to form polyethylene having high molecular weights and low degrees of chain branching. In comparison to the Ni methyl cations, the η3-benzyl cation complexes are more stable and somewhat less active but still very efficient in C2H4 polymerization. The effect on the resulting polyethylene of varying the substituents R, R′ on the phosphine ligand has been examined, and a clear trend for longer chain PE with less branching in the presence of more bulky substituents on the diphosphine has been found. Density functional calculations have been used to examine the rapid suprafacial η3 to η3 haptotropic shift processes of the[(R2PCH2PR′2)Ni] fragment and the η3−η1 change of the coordination mode of the benzyl group required for polymerization in those cations.
Resumo:
A simple phenomenological model for the relationship between structure and composition of the high Tc cuprates is presented. The model is based on two simple crystal chemistry principles: unit cell doping and charge balance within unit cells. These principles are inspired by key experimental observations of how the materials accommodate large deviations from stoichiometry. Consistent explanations for significant HTSC properties can be explained without any additional assumptions while retaining valuable insight for geometric interpretation. Combining these two chemical principles with a review of Crystal Field Theory (CFT) or Ligand Field Theory (LFT), it becomes clear that the two oxidation states in the conduction planes (typically d8 and d9) belong to the most strongly divergent d-levels as a function of deformation from regular octahedral coordination. This observation offers a link to a range of coupling effects relating vibrations and spin waves through application of Hund’s rules. An indication of this model’s capacity to predict physical properties for HTSC is provided and will be elaborated in subsequent publications. Simple criteria for the relationship between structure and composition in HTSC systems may guide chemical syntheses within new material systems.
Resumo:
Monodisperse silica nanoparticles were synthesised by the well-known Stober protocol, then dispersed in acetonitrile (ACN) and subsequently added to a bisacetonitrile gold(I) coordination complex ([Au(MeCN)2]?) in ACN. The silica hydroxyl groups were deprotonated in the presence of ACN, generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN)2]? complex to undergo ligand exchange with the silica nanoparticles and form a surface coordination complex with reduction to metallic gold (Au0) proceeding by an inner sphere mechanism. The residual [Au(MeCN)2]? complex was allowed to react with water, disproportionating into Au0 and Au(III), respectively, with the Au0 adding to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of Au(III) to Au0 by ascorbic acid (ASC). This process generated a thin and uniform gold coating on the silica nanoparticles. The silica NPs batches synthesised were in a size range from 45 to 460 nm. Of these silica NP batches, the size range from 400 to 480 nm were used for the gold-coating experiments.