569 resultados para Co-curricular learning
Resumo:
Most online assessment systems now incorporate social networking features, and recent developments in social media spaces include protocols that allow the synchronisation and aggregation of data across multiple user profiles. In light of these advances and the concomitant fear of data sharing in secondary school education this papers provides important research findings about generic features of online social networking, which educators can use to make sound and efficient assessments in collaboration with their students and colleagues. This paper reports on a design experiment in flexible educational settings that challenges the dichotomous legacy of success and failure evident in many assessment activities for at-risk youth. Combining social networking practices with the sociology of education the paper proposes that assessment activities are best understood as a negotiable field of exchange. In this design experiment students, peers and educators engage in explicit, "front-end" assessment (Wyatt-Smith, 2008) to translate digital artefacts into institutional, and potentiality economic capital without continually referring to paper based pre-set criteria. This approach invites students and educators to use social networking functions to assess “work in progress” and final submissions in collaboration, and in doing so assessors refine their evaluative expertise and negotiate the value of student’s work from which new criteria can emerge. The mobile advantages of web-based technologies aggregate, externalise and democratise this transparent assessment model for most, if not all, student work that can be digitally represented.
Resumo:
The load–frequency control (LFC) problem has been one of the major subjects in a power system. In practice, LFC systems use proportional–integral (PI) controllers. However since these controllers are designed using a linear model, the non-linearities of the system are not accounted for and they are incapable of gaining good dynamical performance for a wide range of operating conditions in a multi-area power system. A strategy for solving this problem because of the distributed nature of a multi-area power system is presented by using a multi-agent reinforcement learning (MARL) approach. It consists of two agents in each power area; the estimator agent provides the area control error (ACE) signal based on the frequency bias estimation and the controller agent uses reinforcement learning to control the power system in which genetic algorithm optimisation is used to tune its parameters. This method does not depend on any knowledge of the system and it admits considerable flexibility in defining the control objective. Also, by finding the ACE signal based on the frequency bias estimation the LFC performance is improved and by using the MARL parallel, computation is realised, leading to a high degree of scalability. Here, to illustrate the accuracy of the proposed approach, a three-area power system example is given with two scenarios.
Resumo:
Over the past decade, Thai schools have been encouraged by the Thai Ministry of Education to introduce more student-centred pedagogies such as cooperative learning into their classrooms (Carter, 2006). However, prior research has indicated that the implementation of cooperative learning into Thai schools has been confounded by cultural traditions endemic within Thai schools (Deveney, 2005). The purpose of the study was to investigate how 32 Grade 3 and 32 Grade 4 students enrolled in a Thai school engaged with cooperative learning in mathematics classrooms after they had been taught cooperative learning strategies and skills. These strategies and skills were derived from a conceptual framework that was the outcome of an analysis and synthesis of social learning, behaviourist and socio-cognitive theories found in the research literature. The intervention began with a two week program during which the students were introduced to and engaged in practicing a set of cooperative learning strategies and skills (3 times a week). Then during the next four weeks (3 times a week), these cooperative learning strategies and skills were applied in the contexts of two units of mathematics lessons. A survey of student attitudes with respect to their engagement in cooperative learning was conducted at the conclusion of the six-week intervention. The results from the analysis of the survey data were triangulated with the results derived from the analysis of data from classroom observations and teacher interviews. The analysis of data identified four complementary processes that need to be considered by Thai teachers attempting to implement cooperative learning into their mathematics classrooms. The paper concludes with a set of criteria derived from the results of the study to guide Thai teachers intending to implement cooperative learning strategies and skills in their classrooms.
Resumo:
This paper acknowledges the influences that a generation Y population brings to dance training methodologies and examines this impact in a tertiary context. Over the last 4 years, Queensland University of Technology has been modifying their curriculum for new students transitioning from the private dance studio into the prevocational university environment. An intensive training program was designed to empower the student creating effective entry points for common understandings in the learning and teaching of dance techniques with improved and accelerated learning outcomes. This paper shares these philosophies and practices in training for life-long learning that prepare the young dancer for longevity in the industry.
Resumo:
The Mobile Learning Kit is a new digital learning application that allows students and teachers to compose, publish, discuss and evaluate their own mobile learning games and events. The research field was interaction design in the context of mobile learning. The research methodology was primarily design-based supported by collaboration between participating disciplines of game design, education and information technology. As such, the resulting MiLK application is a synthesis of current pedagogical models and experimental interaction design techniques and technologies. MiLK is a dynamic learning resource for incorporating both formal and informal teaching and learning practices while exploiting mobile phones and contemporary digital social tools in innovative ways. MiLK explicitly addresses other predominant themes in educational scholarship that relate to current education innovation and reform such as personalised learning, life-long learning and new learning spaces. The success of this project is indicated through rigorous trials and actual uptake of MiLK by international participants in Australia, UK, US and South Africa. MiLK was awarded for excellence in the use of emerging technologies for improved learning and teaching as a finalist (top 3) in the Handheld Learning and Innovation Awards in the UK in 2008. MiLK was awarded funding from the Australasian CRC for Interaction Design in 2008 to prepare the MiLK application for development. MiLK has been awarded over $230,000 from ACID since 2006. The resulting application and research materials are now being commercialised by a new company, ‘ACID Services’.
Resumo:
‘Practice makes perfect’ expresses the common misconception that repetitive practice without appropriate feed-back will deliver improvement in tasks being practised. This paper explores the implementation of a student-driven feed-back mechanism and shows how functional and aesthetic understanding can be progressively enhanced through reflective practice. More efficient practice of clearly understood tasks will enhance dance training outcomes. We were looking for ways to improve teaching efficiency, effectiveness of the students’ practice in the studio and application of safe dance practices. We devised a web-based on-line format, ‘Performing Reflective Practice’, designed to augment and refine studio practice. Only perfect practice makes perfect!
Resumo:
The ways in which the "traditional" tension between words and artwork can be perceived has huge implications for understanding the relationship between critical or theoretical interpretation, art and practice, and research. Within the practice-led PhD this can generate a strange sense of disjuncture for the artist-researcher particularly when engaged in writing the exegesis. This paper aims to explore this tension through an introductory investigation of the work of the philosopher Andrew Benjamin. For Benjamin criticism completes the work of art. Criticism is, with the artwork, at the centre of our experience and theoretical understanding of art – in this way the work of art and criticism are co-productive. The reality of this co-productivity can be seen in three related articles on the work of American painter Marcia Hafif. In each of these articles there are critical negotiations of just how the work of art operates as art and theoretically, within the field of art. This focus has important ramifications for the writing and reading of the exegesis within the practice-led research higher degree. By including art as a significant part of the research reporting process the artist-researcher is also staking a claim as to the critical value of their work. Rather than resisting the tension between word and artwork the practice-led artist-researcher need to embrace the co-productive nature of critical word and creative work to more completely articulate their practice and its significance as research. The ideal venue and opportunity for this is the exegesis.
What are students' understandings of how digital tools contribute to learning in design disciplines?
Resumo:
Building Information Modelling (BIM) is evolving in the Construction Industry as a successor to CAD. CAD is mostly a technical tool that conforms to existing industry practices, however BIM has the capacity to revolutionise industry practice. Rather than producing representations of design intent, BIM produces an exact Virtual Prototype of any building that in an ideal situation is centrally stored and freely exchanged between the project team, facilitating collaboration and allowing experimentation in design. Exposing design students to this technology through their formal studies allows them to engage with cutting edge industry practices and to help shape the industry upon their graduation. Since this technology is relatively new to the construction industry, there are no accepted models for how to “teach” BIM effectively at university level. Developing learning models to enable students to make the most out of their learning with BIM presents significant challenges to those teaching in the field of design. To date there are also no studies of students experiences of using this technology. This research reports on the introduction of Building Information Modeling (BIM) software into a second year Bachelor of Design course. This software has the potential to change industry standards through its ability to revolutionise the work practices of those involved in large scale design projects. Students’ understandings and experiences of using the software in order to complete design projects as part of their assessment are reported here. In depth semi-structured interviews with 6 students revealed that students had views that ranged from novice to sophisticate about the software. They had variations in understanding of how the software could be used to complete course requirements, to assist with the design process and in the workplace. They had engaged in limited exploration of the collaborative potential of the software as a design tool. Their understanding of the significance of BIM for the workplace was also variable. The results indicate that students are beginning to develop an appreciation for how BIM could aid or constrain the work of designers, but that this appreciation is highly varied and likely to be dependent on the students’ previous experiences of working in a design studio environment. Their range of understandings of the significance of the technology is a reflection of their level of development as designers (they are “novice” designers). The results also indicate that there is a need for subjects in later years of the course that allow students to specialise in the area of digital design and to develop more sophisticated views of the role of technology in the design process. There is also a need to capitalise on the collaborative potential inherent in the software in order to realise its capability to streamline some aspects of the design process. As students become more sophisticated designers we should explore their understanding of the role of technology as a design tool in more depth in order to make recommendations for improvements to teaching and learning practice related to BIM and other digital design tools.
Resumo:
This study reported on the issues surrounding the acquisition of problem-solving competence of middle-year students who had been ascertained as above average in intelligence, but underachieving in problem-solving competence. In particular, it looked at the possible links between problem-posing skills development and improvements in problem-solving competence. A cohort of Year 7 students at a private, non-denominational, co-educational school was chosen as participants for the study, as they undertook a series of problem-posing sessions each week throughout a school term. The lessons were facilitated by the researcher in the students’ school setting. Two criteria were chosen to identify participants for this study. Firstly, each participant scored above the 60th percentile in the standardized Middle Years Ability Test (MYAT) (Australian Council for Educational Research, 2005) and secondly, the participants all scored below the cohort average for Criterion B (Problem-solving Criterion) in their school mathematics tests during the first semester of Year 7. Two mutually exclusive groups of participants were investigated with one constituting the Comparison Group and the other constituting the Intervention Group. The Comparison Group was chosen from a Year 7 cohort for whom no problem-posing intervention had occurred, while the Intervention Group was chosen from the Year 7 cohort of the following year. This second group received the problem-posing intervention in the form of a teaching experiment. That is, the Comparison Group were only pre-tested and post-tested, while the Intervention Group was involved in the teaching experiment and received the pre-testing and post-testing at the same time of the year, but in the following year, when the Comparison Group have moved on to the secondary part of the school. The groups were chosen from consecutive Year 7 cohorts to avoid cross-contamination of the data. A constructionist framework was adopted for this study that allowed the researcher to gain an “authentic understanding” of the changes that occurred in the development of problem-solving competence of the participants in the context of a classroom setting (Richardson, 1999). Qualitative and quantitative data were collected through a combination of methods including researcher observation and journal writing, video taping, student workbooks, informal student interviews, student surveys, and pre-testing and post-testing. This combination of methods was required to increase the validity of the study’s findings through triangulation of the data. The study findings showed that participation in problem-posing activities can facilitate the re-engagement of disengaged, middle-year mathematics students. In addition, participation in these activities can result in improved problem-solving competence and associated developmental learning changes. Some of the changes that were evident as a result of this study included improvements in self-regulation, increased integration of prior knowledge with new knowledge and increased and contextualised socialisation.
Resumo:
This paper issues a challenge to the notion of domain-general teaching and learning, positing that different subject areas require distinct approaches to developing student knowledge and understanding. The aim has been to observe and compare awareness and explication of disciplinarity in four senior secondary school subjects: Biology, History, Music and Physics. Specifically, we were interested in: (1) teachers’ concepts of what it means to ‘know the discipline’, to ‘think like a disciplinary expert’ and to ‘teach and learn the discipline’; and (2) how teachers draw these concepts together to build student knowledge in the classroom. The research informs educational practice and policy, in particular curricular initiatives involving interdisciplinary curricula.
Resumo:
We propose to design a Custom Learning System that responds to the unique needs and potentials of individual students, regardless of their location, abilities, attitudes, and circumstances. This project is intentionally provocative and future-looking but it is not unrealistic or unfeasible. We propose that by combining complex learning databases with a learner’s personal data, we could provide all students with a personal, customizable, and flexible education. This paper presents the initial research undertaken for this project of which the main challenges were to broadly map the complex web of data available, to identify what logic models are required to make the data meaningful for learning, and to translate this knowledge into simple and easy-to-use interfaces. The ultimate outcome of this research will be a series of candidate user interfaces and a broad system logic model for a new smart system for personalized learning. This project is student-centered, not techno-centric, aiming to deliver innovative solutions for learners and schools. It is deliberately future-looking, allowing us to ask questions that take us beyond the limitations of today to motivate new demands on technology.
Resumo:
This paper presents a retrospective view of a game design practice that recently switched from the development of complex learning games to the development of simple authoring tools for students to design their own learning games for each other. We introduce how our ‘10% Rule’, a premise that only 10% of what is learnt during a game design process is ultimately appreciated by the player, became a major contributor to the evolving practice. We use this rule primarily as an analytical and illustrative tool to discuss the learning involved in designing and playing learning games rather than as a scientifically and empirically proven rule. The 10% rule was promoted by our experience as designers and allows us to explore the often overlooked and valuable learning processes involved in designing learning games and mobile games in particular. This discussion highlights that in designing mobile learning games, students are not only reflecting on their own learning processes through setting up structures for others to enquire and investigate, they are also engaging in high-levels of independent inquiry and critical analysis in authentic learning settings. We conclude the paper with a discussion of the importance of these types of learning processes and skills of enquiry in 21st Century learning.
Resumo:
This paper explores how mobile games can transform everyday places into dynamic learning spaces filled with information and inspiration. It discusses the motivation inherent in playing games and creating games for others, and how this stimulates an iterative process of creation and reflection and evokes a natural desire to engage in learning. The use of MiLK at the Adelaide Botanic Gardens is offered as a case in point. MiLK is an authoring tool that allows students and teachers to create and share SMS games for mobile phones. A group of South Australian high school students used MiLK to play a game, create their own games and play each other’s games during a day at the gardens. This paper details the learning processes involved in these activities and how the students reflected on their learning, conducted peer assessment, and engaged in a two-way discussion with their teacher about new technologies and their implications for learning. The paper concludes with a discussion of the needs and requirements of 21st Century learners and how MiLK can support constructivist and connectivist teaching methods that engage learners and may produce an appropriately skilled future workforce.
Resumo:
User-Based intelligent systems are already commonplace in a student’s online digital life. Each time they browse, search, buy, join, comment, play, travel, upload, download, a system collects, analyses and processes data in an effort to customise content and further improve services. This panel session will explore how intelligent systems, particularly those that gather data from mobile devices, can offer new possibilities to assist in the delivery of customised, personal and engaging learning experiences. The value of intelligent systems for education lies in their ability to formulate authentic and complex learner profiles that bring together and systematically integrate a student’s personal world with a formal curriculum framework. As we well know, a mobile device can collect data relating to a student’s interests (gathered from search history, applications and communications), location, surroundings and proximity to others (GPS, Bluetooth). However, what has been less explored is the opportunity for a mobile device to map the movements and activities of a student from moment to moment and over time. This longitudinal data provides a holistic profile of a student, their state and surroundings. Analysing this data may allow us to identify patterns that reveal a student’s learning processes; when and where they work best and for how long. Through revealing a student’s state and surroundings outside of schools hour, this longitudinal data may also highlight opportunities to transform a student’s everyday world into an inventory for learning, punctuating their surroundings with learning recommendations. This would in turn lead to new ways to acknowledge and validate and foster informal learning, making it legitimate within a formal curriculum.
Resumo:
Background: In order to design appropriate environments for performance and learning of movement skills, physical educators need a sound theoretical model of the learner and of processes of learning. In physical education, this type of modelling informs the organization of learning environments and effective and efficient use of practice time. An emerging theoretical framework in motor learning, relevant to physical education, advocates a constraints-led perspective for acquisition of movement skills and game play knowledge. This framework shows how physical educators could use task, performer and environmental constraints to channel acquisition of movement skills and decision making behaviours in learners. From this viewpoint, learners generate specific movement solutions to satisfy the unique combination of constraints imposed on them, a process which can be harnessed during physical education lessons. Purpose: In this paper the aim is to provide an overview of the motor learning approach emanating from the constraints-led perspective, and examine how it can substantiate a platform for a new pedagogical framework in physical education: nonlinear pedagogy. We aim to demonstrate that it is only through theoretically valid and objective empirical work of an applied nature that a conceptually sound nonlinear pedagogy model can continue to evolve and support research in physical education. We present some important implications for designing practices in games lessons, showing how a constraints-led perspective on motor learning could assist physical educators in understanding how to structure learning experiences for learners at different stages, with specific focus on understanding the design of games teaching programmes in physical education, using exemplars from Rugby Union and Cricket. Findings: Research evidence from recent studies examining movement models demonstrates that physical education teachers need a strong understanding of sport performance so that task constraints can be manipulated so that information-movement couplings are maintained in a learning environment that is representative of real performance situations. Physical educators should also understand that movement variability may not necessarily be detrimental to learning and could be an important phenomenon prior to the acquisition of a stable and functional movement pattern. We highlight how the nonlinear pedagogical approach is student-centred and empowers individuals to become active learners via a more hands-off approach to learning. Summary: A constraints-based perspective has the potential to provide physical educators with a framework for understanding how performer, task and environmental constraints shape each individual‟s physical education. Understanding the underlying neurobiological processes present in a constraints-led perspective to skill acquisition and game play can raise awareness of physical educators that teaching is a dynamic 'art' interwoven with the 'science' of motor learning theories.