Load–frequency control : a GA-based multi-agent reinforcement learning


Autoria(s): Daneshfar, Fatheme; Bevrani, Hassan
Data(s)

01/01/2010

Resumo

The load–frequency control (LFC) problem has been one of the major subjects in a power system. In practice, LFC systems use proportional–integral (PI) controllers. However since these controllers are designed using a linear model, the non-linearities of the system are not accounted for and they are incapable of gaining good dynamical performance for a wide range of operating conditions in a multi-area power system. A strategy for solving this problem because of the distributed nature of a multi-area power system is presented by using a multi-agent reinforcement learning (MARL) approach. It consists of two agents in each power area; the estimator agent provides the area control error (ACE) signal based on the frequency bias estimation and the controller agent uses reinforcement learning to control the power system in which genetic algorithm optimisation is used to tune its parameters. This method does not depend on any knowledge of the system and it admits considerable flexibility in defining the control objective. Also, by finding the ACE signal based on the frequency bias estimation the LFC performance is improved and by using the MARL parallel, computation is realised, leading to a high degree of scalability. Here, to illustrate the accuracy of the proposed approach, a three-area power system example is given with two scenarios.

Identificador

http://eprints.qut.edu.au/31466/

Publicador

IET

Relação

DOI:10.1049/iet-gtd.2009.0168

Daneshfar, Fatheme & Bevrani, Hassan (2010) Load–frequency control : a GA-based multi-agent reinforcement learning. IET Generation, Transmission & Distribution, 4(1), pp. 13-26.

Fonte

Faculty of Built Environment and Engineering; School of Engineering Systems

Palavras-Chave #090607 Power and Energy Systems Engineering (excl. Renewable Power) #Load-frequency control #reinforcement learning #Multi-agent system
Tipo

Journal Article