36 resultados para Schottky, Diodos de barreira de


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed Pt/tantalum oxide (Ta2O5) Schottky diodes for hydrogen sensing applications. Thin layer (4 nm) of Ta2O5 was deposited on silicon (Si) and silicon carbide (SiC) substrates using the radio frequency sputtering technique. We compared the performance of these sensors at different temperatures of 100 °C and 150 °C. At these operating temperatures, the sensor based on SiC exhibited a larger sensitivity, whilst the sensor based on Si exhibited a faster response toward hydrogen gas. We discussed herein, the experimental results obtained for these Pt/Ta2O5 based Schottky diodes exhibited that they are promising candidates for hydrogen sensing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the study of the effect on adding total peripheries and sharp edges to the Schottky contact as a hydrogen sensor. Schottky contact was successfully designed and fabricated as hexagon-shape. The contact was integrated together with zinc oxide thin film and tested towards 1% hydrogen gas. Simulations of the design were conducted using COMSOL Multiphysics to observe the electric field characteristic at the contact layer. The simulation results show higher electric field induced at sharp edges with 4.18×104 V/m. Current-voltage characteristic shows 0.27 V voltage shift at 40 μA biased current.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to compare the performances of the highly porous Nb2O5 Schottky based sensors formed using different catalytic metals for ethanol vapour sensing. The fabricated sensors consist of a fairly ordered nano-vein like porous Nb2O5 prepared via an elevated temperature anodization method. Subsequently, Pt, Pd and Au were sputtered as both Schottky contacts and catalysts for the comparative studies. These metals are chosen as they have large work functions in comparison to the electron affinity of the anodized Nb2O5. It is demonstrated that the device based on Pd/Nb2O5 Schottky contact has the highest sensitivity amongst the developed sensors. The sensing behaviors were studied in terms of the Schottky barrier height variations and properties of the metal catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schottky barrier solar cells based on graphene/n-silicon heterojunction have been fabricated and characterized and the effect of graphene molecular doping by HNO3 on the solar cells performances have been analyzed. Different doping conditions and thermal annealing processes have been tested to asses and optimize the stability of the devices. The PCE of the cells increases after the treatment by HNO3 and reaches 5% in devices treated at 200 °C immediately before the exposition to the oxidant. Up to now our devices retain about 80% of efficiency over a period of two weeks, which represents a good stability result for similar devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the development of nanoporous tungsten trioxide (WO3) Schottky diode-based gas sensors. Nanoporous WO3 films were prepared by anodic oxidation of tungsten foil in ethylene glycol mixed with ammonium fluoride and a small amount of water. Anodization resulted in highly ordered WO3 films with a large surface-to-volume ratio. Utilizing these nanoporous structures, Schottky diode-based gas sensors were developed by depositing a platinum (Pt) catalytic contact and tested towards hydrogen gas and ethanol vapour. Analysis of the current–voltage characteristics and dynamic responses of the sensors indicated that these devices exhibited a larger voltage shift in the presence of hydrogen gas compared to ethanol vapour at an optimum operating temperature of 200 °C. The gas sensing mechanism was discussed, associating the response to the intercalating H+ species that are generated as a result of hydrogen and ethanol molecule breakdowns onto the Pt/WO3 contact and their spill over into nanoporous WO3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the fabrication and study of a Schottky diode based on Pt/WO3 nanoplatelet/SiC for H2 gas sensing applications. The nanostructured WO3 films were synthesized from tungsten (sputtered on SiC) via an acidetching method using a 1.5 M HNO3 solution. Scanning electron microscopy of the developed films revealed platelet crystals with thicknesses in the order of 20-60 nm and lengths between 100-700 nm. The current-voltage characteristic and dynamic response of the diodes were measured in the presence of air and 1% H2 gas balanced in air from 25 to 300°C. Upon exposure to 1% H2, voltage shifts of 0.64, 0.93 and 1.14 V were recorded at temperatures of 120, 200 and 300°C, respectively at a constant forward bias current of 500 μA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few-layer graphene films were grown by chemical vapor deposition and transferred onto n-type crystalline silicon wafers to fabricate graphene/n-silicon Schottky barrier solar cells. In order to increase the power conversion efficiency of such cells the graphene films were doped with nitric acid vapor and an antireflection treatment was implemented to reduce the sunlight reflection on the top of the device. The doping process increased the work function of the graphene film and had a beneficial effect on its conductivity. The deposition of a double antireflection coating led to an external quantum efficiency up to 90% across the visible and near infrared region, the highest ever reported for this type of devices. The combined effect of graphene doping and antireflection treatment allowed to reach a power conversion efficiency of 8.5% exceeding the pristine (undoped and uncoated) device performance by a factor of 4. The optical properties of the antireflection coating were found to be not affected by the exposure to nitric acid vapor and to remain stable over time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scanning Tunneling Spectroscopy was performed on a (15,0) single wall carbon nanotube partially wrapped by Poly(3-hexyl-thiophene). On the bare nanotube section, the local density of states is in good agreement with the theoretical model based on local density approximation and remarkably is not perturbed by the polymer wrapping. On the coiled section, a rectifying current-voltage characteristic has been observed along with the charge transfer from the polymer to the nanotube. The electron transfer from Poly(3-hexyl-thiophene) to metallic nanotube was previously theoretically proposed and contributes to the presence of the Schottky barrier at the interface responsible for the rectifying behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current-voltage (I-V) curves of Poly(3-hexyl-thiophene) (P3HT) diodes have been collected to investigate the polymer hole-dominated charge transport. At room temperature and at low electric fields the I-V characteristic is purely Ohmic whereas at medium-high electric fields, experimental data shows that the hole transport is Trap Dominated - Space Charge Limited Current (TD-SCLC). In this regime, it is possible to extract the I-V characteristic of the P3HT/Al junction showing the ideal Schottky diode behaviour over five orders of magnitude. At high-applied electric fields, holes’ transport is found to be in the trap free SCLC regime. We have measured and modelled in this regime the holes’ mobility to evaluate its dependence from the electric field applied and the temperature of the device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanowires of different metal oxides (SnO2, ZnO) have been grown by evaporation-condensation process. Their chemical composition has been investigated by using XPS. The standard XPS quantification through main photoelectron peaks, modified Auger parameter and valence band spectra were examined for the accurate determination of oxidation state of metals in the nanowires. Morphological investigation has been conducted by acquiring and analyzing the SEM images. For the simulation of working conditions of sensor, the samples were annealed in ultra high vacuum (UHV) up to 500°C and XPS analysis repeated after this treatment. Finally, the nanowires of SnO 2 have were used to produce a novel gas sensor based on Pt/oxide/SiC structure and operating as Schottky diode. Copyright © 2008 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present how a thin RF sputtered layer of lanthanum oxide (La2O3) can alter electrical and improve hydrogen gas sensing characteristics of Pt/molybdenum oxide (MoO3) nanostructures Schottky diodes. We derived the barrier height, ideality factor and dielectric constant from the measured I–V characteristics at operating temperatures in the range of 25–300 ◦C. The dynamic response, response and recovery times were obtained upon exposure to hydrogen gas at different concentrations. Analysis of the results indicated a substantial improvement to the voltage shift sensitivity of the sensors incorporating the La2O3 layer. We associate this enhancement to the formation of numerous trap states due to the presence of the La2O3 thin film on the MoO3 nanoplatelets. These trap states increase the intensity of the dipolar charges at the metal–semiconductor interface, which induce greater bending of the energy bands. However, results also indicate that the presence of La2O3 trap states also increases response and recover times as electrons trapping and de-trapping processes occur before they can pass through this thin dielectric layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation on hydrogen and methane sensing performance of hydrothermally formed niobium tungsten oxide nanorods employed in a Schottky diode structure is presented herein. By implementing tungsten into the surface of the niobium lattice, we create Nb5+ and W5+ oxide states and an abundant number of surface traps, which can collect and hold the adsorbate charge to reinforce a greater bending of the energy bands at the metal/oxide interface. We show experimentally, that extremely large voltage shifts can be achieved by these nanorods under exposure to gas at both room and high temperatures and attribute this to the strong accumulation of the dipolar charges at the interface via the surface traps. Thus, our results demonstrate that niobium tungsten oxide nanorods can be implemented for gas sensing applications, showing ultra-high sensitivities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents material and gas sensing properties of Pt/SnO2 nanowires/SiC metal oxide semiconductor devices towards hydrogen. The SnO2 nanowires were deposited onto the SiC substrates by vapour-liquid-solid growth mechanism. The material properties of the sensors were investigated using scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The current-voltage characteristics have been analysed. The effective change in the barrier height for 1% hydrogen was found to be 142.91 meV. The dynamic response of the sensors towards hydrogen at different temperatures has also been studied. At 530°C, voltage shift of 310 mV for 1% hydrogen was observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zinc oxide (ZnO) is one of the most promising electronic and photonic materials to date. In this work, we present an enhanced ZnO Schottky gas sensor deposited on SiC substrates in comparison to those reported previously in literature. The performance of ZnO/SiC based Schottky thin film gas sensors produced a forward lateral voltage shift of 12.99mV and 111.87mV in response to concentrations of hydrogen gas at 0.06% and 1% in air at optimum temperature of 330 ºC. The maximum change in barrier height was calculated as 37.9 meV for 1% H2 sensing operation at the optimum temperature.