74 resultados para Giunzioni, Incollaggi, Pin, Collar, Interferenza
Resumo:
Managing livestock movement in extensive systems has environmental and production benefits. Currently permanent wire fencing is used to control cattle; this is both expensive and inflexible. Cattle are known to respond to auditory and visual cues and we investigated whether these can be used to manipulate their behaviour. Twenty-five Belmont Red steers with a mean live weight of 270kg were each randomly assigned to one of five treatments. Treatments consisted of a combination of cues (audio, tactile and visual stimuli) and consequence (electrical stimulation). The treatments were electrical stimulation alone, audio plus electrical stimulation, vibration plus electrical stimulation, light plus electrical stimulation and electrified electric fence (6kV) plus electrical stimulation. Cue stimuli were administered for 3s followed immediately by electrical stimulation (consequence) of 1kV for 1s. The experiment tested the operational efficacy of an on-animal control or virtual fencing system. A collar-halter device was designed to carry the electronics, batteries and equipment providing the stimuli, including audio, vibration, light and electrical of a prototype virtual fencing device. Cattle were allowed to travel along a 40m alley to a group of peers and feed while their rate of travel and response to the stimuli were recorded. The prototype virtual fencing system was successful in modifying the behaviour of the cattle. The rate of travel of cattle along the alley demonstrated the large variability in behavioural response associated with tactile, visual and audible cues. The experiment demonstrated virtual fencing has potential for controlling cattle in extensive grazing systems. However, larger numbers of cattle need to be tested to derive a better understanding of the behavioural variance. Further controlled experimental work is also necessary to quantify the interaction between cues, consequences and cattle learning.
Resumo:
We consider the problem of monitoring and controlling the position of herd animals, and view animals as networked agents with natural mobility but not strictly controllable. By exploiting knowledge of individual and herd behavior we would like to apply a vast body of theory in robotics and motion planning to achieving the constrained motion of a herd. In this paper we describe the concept of a virtual fence which applies a stimulus to an animal as a function of its pose with respect to the fenceline. Multiple fence lines can define a region, and the fences can be static or dynamic. The fence algorithm is implemented by a small position-aware computer device worn by the animal, which we refer to as a Smart Collar.We describe a herd-animal simulator, the Smart Collar hardware and algorithms for tracking and controlling animals as well as the results of on-farm experiments with up to ten Smart Collars.
Resumo:
Controlling free-ranging livestock requires low-stress cues to alter animal behaviour. Recently modulated sound and electric shock were demonstrated to be effective in controlling free-ranging cattle. In this study the behaviour of 60, 300 kg Belmont Red heifers were observed for behavioural changes when presented cues designed to impede their movement through an alley. The heifers were given an overnight drylot shrink off feed but not drinking water prior to being tested. Individual cattle were allowed to move down a 6.5 m wide alley towards a pen of peers and feed located 71 m from their point of release. Each animal was allowed to move through the alley unimpeded five times to establish a basal behavioural pattern. Animals were then randomly assigned to treatments consisting of sound plus shock, vibration plus shock, a visual cue plus shock, shock by itself and a control. The time each animal required to reach the pen of peers and feed was recorded. If the animal was prevented from reaching the pen of peers and feed by not penetrating through the cue barrier at set points along the alley for at least 60 sec the test was stopped and the animal was returned to peers located behind the release pen. Cues and shock were manually applied from a laptop while animals were observed from a 3.5 m tower located outside the alley. Electric shock, sound, vibration and Global Position System (GPS) hardware were housed in a neck collar. Results and implications will be discussed.
Resumo:
A virtual fence is created by applying an aversive stimulus to an animal when it approaches a predefined boundary. It is implemented by a small animal-borne computer system with a GPS receiver. This approach allows the implementation of virtual paddocks inside a normal physically-fenced paddock. Since the fence lines are virtual they can be moved by programming to meet the needs of animal or land management. This approach enables us to consider animals as agents with natural mobility that are controllable and to apply a vast body of theory in motion planning. In this paper we describe a herd-animal simulator and physical experiments conducted on a small herd of 10 animals using a Smart Collar. The Smart Collar consists of a GPS, PDA, wireless networking and a sound amplifier. We describe a motion planning algorithm that can move a virtual paddock subject to landscape constraints which is suitable for mustering cows. We present simulation results and data from experiments with 8 cows equipped with Smart Collars.
Resumo:
Bone development is influenced by the local mechanical environment. Experimental evidence suggests that altered loading can change cell proliferation and differentiation in chondro- and osteogenesis during endochondral ossification. This study investigated the effects of three-point bending of murine fetal metatarsal bone anlagen in vitro on cartilage differentiation, matrix mineralization and bone collar formation. This is of special interest because endochondral ossification is also an important process in bone healing and regeneration. Metatarsal preparations of 15 mouse fetuses stage 17.5 dpc were dissected en bloc and cultured for 7 days. After 3 days in culture to allow adherence they were stimulated 4 days for 20 min twice daily by a controlled bending of approximately 1000-1500 microstrain at 1 Hz. The paraffin-embedded bone sections were analyzed using histological and histomorphometrical techniques. The stimulated group showed an elongated periosteal bone collar while the total bone length was not different from controls. The region of interest (ROI), comprising the two hypertrophic zones and the intermediate calcifying diaphyseal zone, was greater in the stimulated group. The mineralized fraction of the ROI was smaller in the stimulated group, while the absolute amount of mineralized area was not different. These results demonstrate that a new device developed to apply three-point bending to a mouse metatarsal bone culture model caused an elongation of the periosteal bone collar, but did not lead to a modification in cartilage differentiation and matrix mineralization. The results corroborate the influence of biophysical stimulation during endochondral bone development in vitro. Further experiments with an altered loading regime may lead to more pronounced effects on the process of endochondral ossification and may provide further insights into the underlying mechanisms of mechanoregulation which also play a role in bone regeneration.
Resumo:
Purpose – The purpose of this paper is to determine the patterns of transitional employment (TE) aspirations and training and development (T&D) needs of women within local government. Design/methodology/approach – A quantitative survey methodology was used to identify aspirations in a sample of 1,068 employees from the Australian Local Government Association. Findings – Mature-aged women were very interested in continuous learning at work despite their limited formal education. Their training preferences consisted of informal delivery face-to-face or online in the areas of management or administration. Younger women were interested in undertaking university courses, while a minority were interested in blue collar occupations. Practical implications – Through the identification of patterns of TE and T&D aspirations, long term strategies to develop and retain women in local government may be developed. Findings suggest that mature-aged women would benefit from additional T&D to facilitate entry into management and senior administration positions, as well as strategies to facilitate a shift in organizational climate. Social implications – Mature-aged women were found to be a potentially untapped resource for management and senior administrative roles owing to their interest in developing skills in these fields and pursuing TE. Younger women may also benefit from T&D to maintain their capacity during breaks from employment. Encouragement of women in non-traditional areas may also address skill shortages in the local government. Originality/value – Mature-aged women were found to be a potentially untapped resource for management and senior administrative roles owing to their interest in developing skills in these fields and pursuing TE. Younger women may also benefit from T&D to maintain their capacity during breaks from employment. Encouragement of women in non-traditional areas may also address skill shortages in the local government.
Resumo:
Despite considerable success in treatment of early stage localized prostate cancer (PC), acute inadequacy of late stage PC treatment and its inherent heterogeneity poses a formidable challenge. Clearly, an improved understanding of PC genesis and progression along with the development of new targeted therapies are warranted. Animal models, especially, transgenic immunocompetent mouse models, have proven to be the best ally in this respect. A series of models have been developed by modulation of expression of genes implicated in cancer-genesis and progression; mainly, modulation of expression of oncogenes, steroid hormone receptors, growth factors and their receptors, cell cycle and apoptosis regulators, and tumor suppressor genes have been used. Such models have contributed significantly to our understanding of the molecular and pathological aspects of PC initiation and progression. In particular, the transgenic mouse models based on multiple genetic alterations can more accurately address the inherent complexity of PC, not only in revealing the mechanisms of tumorigenesis and progression but also for clinically relevant evaluation of new therapies. Further, with advances in conditional knockout technologies, otherwise embryonically lethal gene changes can be incorporated leading to the development of new generation transgenics, thus adding significantly to our existing knowledge base. Different models and their relevance to PC research are discussed.
Resumo:
Competitive sailing is characterised by continuous interdependencies of decisions and actions. All actions imply a permanent monitoring of the environmental conditions, such as intensity and direction of the wind, sea characteristics, and the behaviour of the opponent sailors. These constraints on sailors’ behavior are in constant change implying continuous adjustments in sailors’ actions and decisions. Among the different parts of a regatta, tactics and strategy at the start are particularly relevant. Among coaches there is an adage that says that “the start is 50% of a regatta” (Houghton, 1984; Saltonstall, 1983/1986). Olympic sailing regattas are performed with boats of the same class, by one, two or three sailors, depending on the boat class. Normally before the start, sailors visit the racing venue and analyse wind and sea characteristics, in order to fine- tune their boats accordingly. Then, five minutes before the start, sailors initiate starting procedures in order to be in a favourable position at the starting line (at the “second zero”). This position is selected during the start period according to wind shifts tendencies and the actions of other boats (Figure 11.1). Only after the start signal can the boats cross the imaginary starting line between the race committee signal boat “A” and the pin end boat. The start takes place against the wind (upwind), and the boats start racing in the direction of mark 1. Based on the evaluation of the sea and wind characteristics (e.g. if the wind is stronger at a particular place on the course), sailors re- adjust their strategy for the regatta. This strategy may change during the regatta, according to wind changes and adversary actions. More to the point, strategic decisions constrain and are constrained by on- line decisions during the regatta.
Resumo:
...the probabilistic computer simulation study by Dunham and colleagues evaluating the impact of different cervical spine management (CSM) strategies on tetraplegia and brain injury outcomes.1 Based on literature findings, expert opinion and with use of advances programming techniques the authors conclude that early collar removal without cervical spine magnetic resonance imaging (MRI) is a preferable CSM strategy for comatose, blunt trauma patients with extremity movement and a negative cervical spine computed tomography(CT) scan. Although we do not have the required expertise to comment on the applied statistical approach, we would like to comment on one of the medical assumptions raised by the authors, namely the likelihood of tetraplegia in this specific population....
Resumo:
Small animal fracture models have gained increasing interest in fracture healing studies. To achieve standardized and defined study conditions, various variables must be carefully controlled when designing fracture healing experiments in mice or rats. The strain, age and sex of the animals may influence the process of fracture healing. Furthermore, the choice of the fracture fixation technique depends on the questions addressed, whereby intra- and extramedullary implants as well as open and closed surgical approaches may be considered. During the last few years, a variety of different, highly sophisticated implants for fracture fixation in small animals have been developed. Rigid fixation with locking plates or external fixators results in predominantly intramembranous healing in both mice and rats. Locking plates, external fixators, intramedullary screws, the locking nail and the pin-clip device allow different degrees of stability resulting in various amounts of endochondral and intramembranous healing. The use of common pins that do not provide rotational and axial stability during fracture stabilization should be discouraged in the future. Analyses should include at least biomechanical and histological evaluations, even if the focus of the study is directed towards the elucidation of molecular mechanisms of fracture healing using the largely available spectrum of antibodies and gene-targeted animals to study molecular mechanisms of fracture healing. This review discusses distinct requirements for the experimental setups as well as the advantages and pitfalls of the different fixation techniques in rats and mice.
Resumo:
Our research explores the design of networked technologies to facilitate local suburban communications and to encourage people to engage with their local community. While there are many investigations of interaction designs for networked technologies, most research utilises small exercises, workshops or other short-term studies to investigate interaction designs. However, we have found these short-term methods to be ineffective in the context of understanding local community interaction. Moreover we find that people are resistant to putting their time into workshops and exercises, understandably so because these are academic practices, not local community practices. Our contribution is to detail a long term embedded design approach in which we interact with the community over the long term in the course of normal community goings-on with an evolving exploratory prototype. This paper discusses the embedded approach to working in the wild for extended field research.
Resumo:
“The process of innovation is often seen as being very linear, with research results, new technologies or user insights being channelled, often prematurely, into specific products and process” (Kyffin and Gardien 2009). It is precisely this perception of innovation-as-linear-process which this paper seeks to challenge. While there are many current theories and much contemporary literature available which discuss the management and catalysts of innovation, what is missing are examples of how innovation occurs from the application of these theories and literature (Wrigley & Bucolo 2010). This paper addresses both this gap and perceptions of the viability of linear innovation by presenting a case study for the commercialisation of a core technology (a cleantech, semi-portable mass-energy generator posited as a direct competitor to conventional energy provision systems), within an 18-month timeframe by the use of the Design-Led Innovation approach: “a process of creating a sustainable competitive advantage by radically changing the customer value proposition” (Bucolo & Matthews 2011).
Resumo:
Participatory design prioritises the agency of those who will be most affected by design outcomes. However in cross cultural innovation involving indigenous and non-indigenous communities there is much work to do to develop the cross cultural innovation practices that can best bring together different skills, perspectives and ways of knowing in order to realise the aspirations of indigenous peoples. In this short paper we outline a work-inprogress method based upon relationship development and reciprocity over practical, tangible and culturally appropriate activities. We argue that in a cross-cultural setting the participatory innovation process must be part of a larger relationship building process. The paper centres around a proposed design project with a remote indigenous community on the Groote Eylandt archipelago. A project proposal has evolved from a relationship built through ecological work between scientists and the local community to study native populations of animal species. We describe the context and history and our proposed approach to engaging indigenous knowledge in design.
Resumo:
The Making Design and Analysing Interaction track at the Participatory Innovation Conference calls for submissions from ‘Makers’ who will contribute examples of participatory innovation activities documented in video and ‘Analysts’ who will analyse those examples of participatory innovation activity. The aim of this paper is to open up for a discussion within the format of the track of the roles that designers could play in analysing the participatory innovation activities of others and to provide a starting point for this discussion through a concrete example of such ‘designerly analysis’. Designerly analysis opens new analytic frames for understanding participatory innovation and contributes to our understanding of design activities.
Resumo:
There is significant interest in Human-computer interaction methods that assist in the design of applications for use by children. Many of these approaches draw upon standard HCI methods,such as personas, scenarios, and probes. However, often these techniques require communication and kinds of thinking skills that are designer centred,which prevents children with Autism Spectrum Disorders or other learning and communication disabilities from being able to participate. This study investigates methods that might be used with children with ASD or other learning and communication disabilities to inspire the design of technology based intervention approaches to support their speech and language development. Similar to Iversen and Brodersen, we argue that children with ASD should not be treated as being in some way “cognitively incomplete”. Rather they are experts in their everyday lives and we cannot design future IT without involving them. However, how do we involve them Instead of beginning with HCI methods, we draw upon easy to use technologies and methods used in the therapy professions for child engagement, particularly utilizing the approaches of Hanen (2011) and Greenspan (1998). These approaches emphasize following the child’s lead and ensuring that the child always has a legitimate turn at a detailed level of interaction. In a pilot project, we have studied a child’s interactions with their parents about activities over which they have control – photos that they have taken at school on an iPad. The iPad was simple enough for this child with ASD to use and they enjoyed taking and reviewing photos. We use this small case study as an example of a child-led approach for a child with ASD. We examine interactions from this study in order to assess the possibilities and limitations of the child-led approach for supporting the design of technology based interventions to support speech and language development.