33 resultados para Cobalt Ferrite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoblast lineage cells are direct effectors of osteogenesis and are, therefore, commonly used to evaluate the in vitro osteogenic capacity of bone substitute materials. This method has served its purposes when testing novel bone biomaterials; however, inconsistent results between in vitro and in vivo studies suggest the mechanisms that govern a material's capacity to mediate osteogenesis are not well understood. The emerging field of osteoimmunology and immunomodulation has informed a paradigm shift in our view of bone biomaterials–from one of an inert to an osteoimmunomodulatory material–highlighting the importance of immune cells in materials-mediated osteogenesis. Neglecting the importance of the immune response during this process is a major shortcoming of the current evaluation protocol. In this study we evaluated a potential angiogenic bone substitute material cobalt incorporated with β-tricalcium phosphate (CCP), comparing the traditional “one cell type” approach with a “multiple cell types” approach to assess osteogenesis, the latter including the use of immune cells. We found that CCP extract by itself was sufficient to enhance osteogenic differentiation of bone marrow stem cells (BMSCs), whereas this effect was cancelled out when macrophages were involved. In response to CCP, the macrophage phenotype switched to the M1 extreme, releasing pro-inflammatory cytokines and bone catabolic factors. When the CCP materials were implanted into a rat femur condyle defect model, there was a significant increase of inflammatory markers and bone destruction, coupled with fibrous encapsulation rather than new bone formation. These findings demonstrated that the inclusion of immune cells (macrophages) in the in vitro assessment matched the in vivo tissue response, and that this method provides a more accurate indication of the essential role of immune cells when assessing materials-stimulated osteogenesis in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthetic Fe—Mn alkoxide of glycerol samples are submitted to controlled heating conditions and examined by IR absorption spectroscopy. On the other hand, the same sample is studied by infrared emission spectroscopy (IRES), upon heating in situ from 100 to 600°C. The spectral techniques employed in this contribution, especially IRES, show that as a result of the thermal treatments ferromagnetic oxides (manganese ferrite) are formed between 350 and 400°C. Some further spectral changes are seen at higher temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the structure of polymeric title compound, {[Co2(C7H2N2O7)2(H2O)6] . 2H2O}n from the reaction of 3,5-dinitrosalicylic acid with cobalt(II) acetate, both slightly distorted octahedral Co(II) centres have crystallographic inversion symmetry. The coordination sphere about one Co centre comprises four O donors from two bidentate chelate O(phenolate), O(carboxyl) and bridging dianionic ligands and two water molecules [Co-O range, 2.0249(11)-2.1386(14)A] while that about the second Co centre has four water molecules and two bridging carboxyl O donor atoms [Co-O range, 2.0690(14)-2.1364(11)A]. The coordinated water molecules as well as the water molecules of solvation give water-water and water-carboxyl hydrogen-bonding interactions in the three-dimensional framework structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The periosteum plays an indispensable role in both bone formation and bone defect healing. The aim of this project is to produce tissue engineered periosteum for bone defect treatment. Methods: In this study we constructed an artificial in vitro periosteum by incorporating osteogenic differentiated bone marrow stromal cells (BMSCs) and cobalt chloride (CoCl2)-treated BMSCs. The engineered periostea were implanted both subcutaneously and into skull bone defects in SCID mice to investigate ectopic and orthotopic osteogenesis and vascularisation. After two weeks in subcutaneous and four weeks in bone defect areas, the implanted constructs were assessed for ectopic and orthotopic osteogenesis and vascularisation by micro-CT, histomorphometrical and immunohistochemical methods. Results: The results showed that CoCl2 pre-treated BMSCs induced higher degree of vascularisation and enhanced osteogenesis within the implants in both ectopic and orthotopic areas. Conclusion: This study provided a novel approach using BMSCs sourced from the same patient for both osteogenic and pro-angiogenic purposes in constructing tissue engineered periosteum to enhance vascularized osteogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, a range of nanomaterials have been synthesised based on metal oxyhydroxides MO(OH), where M=Al, Co, Cr, etc. Through a self-assembly hydrothermal route, metal oxyhydroxide nanomaterials with various morphologies were successfully synthesised: one dimensional boehmite (AlO(OH)) nanofibres, zero dimensional indium hydroxide (In(OH)3) nanocubes and chromium oxyhydroxide (CrO(OH)) nanoparticles, as well as two dimensional cobalt hydroxide and oxyhydroxide (Co(OH)2 & CoO(OH)) nanodiscs. In order to control the synthetic nanomaterial morphology and growth, several factors were investigated including cation concentration, temperature, hydrothermal treatment time, and pH. Metal ion doping is a promising technique to modify and control the properties of materials by intentionally introducing impurities or defects into the material. Chromium was successfully applied as a dopant for fabricating doped boehmite nanofibres. The thermal stability of the boehmite nanofibres was enhanced by chromium doping, and the photoluminescence property was introduced to the chromium doped alumina nanofibres. Doping proved to be an efficient method to modify and functionalize nanomaterials. The synthesised nanomaterials were fully characterised by X-ray diffraction (XRD), transmission electron microscopy (TEM) combined with selected area electron diffraction (SAED), scanning electron microscopy (SEM), BET specific surface area analysis, X-ray photoelectron spectroscopy (XPS) and thermo gravimetric analysis (TGA). Hot-stage Raman and infrared emission spectroscopy were applied to study the chemical reactions during dehydration and dehydroxylation. The advantage of these techniques is that the changes in molecular structure can be followed in situ and at the elevated temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant cleavage by hammerhead ribozymes requires activation by divalent metal ions. Several models have been proposed to account for the influence of metal ions on hammerhead activity. A number of recent papers have presented data that have been interpreted as supporting a one-metal-hydroxide-ion mechanism. In addition, a solvent deuterium isotope effect has been taken as evidence against a proton transfer in the rate-limiting step of the cleavage reaction. We propose that these data are more easily explained by a two-metal-ion mechanism that does not involve a metal hydroxide, but does involve a proton transfer in the rate-limiting step.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone defects, especially large bone defects, remain a major challenge in orthopaedic surgery. Autologous bone transplantation is considered the most effective treatment, but insufficient donor tissue, coupled with concerns about donor site morbidity, has hindered this approach in large-scale applications. Alternative approaches include implanting biomaterials such as bioactive glass (BG), which has been widely used for bone defect healing, due to having generally good biocompatibility, and can be gradually biodegraded during the process of new bone formation. Mesoporous bioactive glass (MBG) is a newly developed bioactive glass which has been proven to have enhanced in-vitro bioactivity; however the in-vivo osteogenesis has not been studied. A critical problem in using the bone tissue engineering approach to restore large bone defects is that the nutrient supply and cell viability at the centre of the scaffold is severely hampered since the diffusion distance of nutrients and oxygen for cell survival is limited to 150-200µm. Cobalt ions has been shown to mimic hypoxia, which plays a pivotal role in coupling angiogenesis with osteogenesis in-vivo by activating hypoxia inducing factor-1α (HIF-1α) transcription factor, subsequently initiating the expression of genes associated with tissue regeneration. Therefore, one aim of this study is to investigate the in-vivo osteogenesis of MBG by comparison with BG and β-TCP, which are widely used clinically. The other aim is to explore hypoxia-mimicking biomaterials by incorporating Cobalt into MBG and β-TCP. MBG and β-TCP incorporated with 5% cobalt (5Co-MBG and 5CCP) have also been studied in-vivo to determine whether the hypoxic effect has a beneficial effect on the bone formation. The composition and microstructure of synthesised materials (BG, MBG, 5Co-MBG, 5CCP) were characterised, along with the mesopore properties of the MBG materials. Dissolution and cytotoxicity of the Co-containing materials were also investigated. Femoral samples with defects harvested at 4 and 8 weeks were scanned using micro-CT followed by processing for histology (H&E staining) to determine bone formation. Histology of MBG showed a slower rate of bone formation at 4 weeks than BG, however at 8 weeks it could be clearly seen that MBG had more bone formation. The in-vivo results show that the osteogenesis of MBG reciprocates the enhanced performance shown in-vitro compared to BG. Dissolution study showed that Co ions can be efficiently released from MBG and β-TCP in a controllable way. Low amounts of Co incorporated into the MBG and β-TCP showed no significant cytotoxicity and the Co-MBG powders maintained a mesopore structure although not as highly ordered as pure MBG. Preliminary study has shown that Co incorporated samples showed little to no bone formation, instead incurring high lymphocyte activity. Further studies need to be done on Co incorporated materials to determine the cause for high lymphocyte activity in-vivo, which appear to hinder bone formation. In conclusion, this study demonstrated the osteogenic activity of MBG and provided some valuable information of tissue reaction to Co-incorporated MBG and TCP materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been much discussion and controversy in the media recently regarding metal toxicity following large head metal on metal (MoM) total hip replacement (THR). Patients have been reported as having hugely elevated levels of metal ions with, at times, devastating systemic, neurolgical and/or orthopaedic sequelae. However, no direct correlation between metal ion level and severity of metallosis has yet been defined. Normative levels of metal ions in well functioning, non Cobalt-Chrome hips have also not been defined to date. The Exeter total hip replacement contains no Cobalt-Chrome (Co-Cr) as it is made entirely from stainless steel. However, small levels of these metals may be present in the modular head of the prosthesis, and their effect on metal ion levels in the well functioning patient has not been investigated. We proposed to define the “normal” levels of metal ions detected by blood test in 20 well functioning patients at a minimum 1 year post primary Exeter total hip replacement, where the patient had had only one joint replaced. Presently, accepted normal levels of blood Chromium are 10–100 nmol/L and plasma Cobalt are 0–20 nmol/L. The UK Modern Humanities Research Association (MHRA) has suggested that levels of either Cobalt or Chromium above 7 ppb (equivalent to 135 nmol/L for Chromium and 120 nmol/L for Cobalt) may be significant. Below this level it is indicated that significant soft tissue reaction and tissue damage is less likely and the risk of implant failure is reduced. Hips were a mixture of cemented and hybrid procedures performed by two experienced orthopaedic consultants. Seventy percent were female, with a mixture of head sizes used. In our cohort, there were no cases where the blood Chromium levels were above the normal range, and in more than 70% of cases, levels were below recordable levels. There were also no cases of elevated plasma Cobalt levels, and in 35% of cases, levels were negligible. We conclude that the implantation with an Exeter total hip replacement does not lead to elevation of blood metal ion levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional methods of isolated MOSFET/IGBT gate drive are presented, and their pros and cons assessed. The best options are chosen to meet our objective— a small, high speed, low cost, low power isolated gate drive module. Two small ferrite bead transformers are used for isolation, one transmits power at 2.5MHz, the other sends narrow set reset pulses. On the secondary these pulses drive a transistor totem pole to ensure high current drive, and the value is held by CMOS buffers with positive feedback. An alternative design for driving logic level devices uses only an HC buffer on the secondary. Double sided SMDconstruction (primary one side, secondary on the other) yields an upright module 40x18x5mm. Propagation delaywas 20ns, and rise/fall time 15ns with a 1nF load. The design places no limits on frequency of operation or duty cycle. Power supply requirementswere 5V@20mA for operation below 100kHz, dominated by magnetising current.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemically reversible solid−solid phase transformation of a TCNQ-modified glassy carbon, indium tin oxide, or metal electrode into Co\[TCNQ]2(H2O)2 material in the presence of Co2+(aq) containing electrolytes has been induced and monitored electrochemically. Voltammetric data reveal that the TCNQ/Co\[TCNQ]2(H2O)2 interconversion process is independent of electrode material and identity of cobalt electrolyte anion. However, a marked dependence on electrolyte concentration, scan rate, and method of electrode modification (drop casting or mechanical attachment) is found. Cyclic voltammetric and double potential step chronoamperometric measurements confirm that formation of Co\[TCNQ]2(H2O)2 occurs through a rate-determining nucleation and growth process that initially involves incorporation of Co2+(aq) ions into the reduced TCNQ crystal lattice at the TCNQ|electrode|electrolyte interface. Similarly, the reverse (oxidation) process, which involves transformation of solid Co\[TCNQ]2(H2O)2 back to parent TCNQ crystals, also is controlled by nucleation−growth kinetics. The overall chemically reversible process that represents this transformation is described by the reaction:  2TCNQ0(s) + 2e- + Co2+(aq) + 2H2O \[Co(TCNQ)2(H2O)2](s). Ex situ SEM images illustrated that this reversible TCNQ/Co\[TCNQ]2(H2O)2 conversion process is accompanied by drastic size and morphology changes in the parent solid TCNQ. In addition, different sizes of needle-shaped nanorod/nanowire crystals of Co\[TCNQ]2(H2O)2 are formed depending on the method of surface immobilization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper doped zinc aluminium ferrites are synthesized by the solid-state reaction route is cubic crystalline with unit cell parameter varying from 8.39 to 8.89 Å. TEM pictures clearly indicating that fundamental unit is composed of octahedral and tetrahedral blocks and joined strongly shown in (a). EPR spectra is compositional dependent at lower Al/Cu concentration EPR spectra is due to Fe3+ and at a higher content of Al/Cu the EPR spectra is due to Cu2+. Absence of EPR spectra at room temperature indicates that the sample is perfectly ferromagnetic. EPR results at low temperature indicate that the sample is paramagnetic, and that copper is placed in the tetragonal elongation (B) site with magnetically non-equivalent ions in the unit cell having strong exchange coupling between them. This is shown in (b). (a) TEM image of ferrite with x = 0.15. (b) EPR spectrum of ferrite with x = 0.75.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Metal ion release is common following total hip arthroplasty, yet postoperative levels have not been defined for most stems currently used in clinical practice. AIM: To assess metal ion release in the serum of patients with well functioning unilateral Exeter V40 primary total hip arthroplasties one year after surgery. METHODS: Whole blood chromium and serum cobalt levels were measured in 20 patients following primary total hip arthroplasty with the Exeter V40 stem and a variety of acetabular components one year after surgery. RESULTS: Whole blood chromium levels were within the normal range (10-100 nmol/L), with a single mild elevation of serum cobalt (normal < 20 nmol/L). CONCLUSION: In well functioning primary unilateral total hip arthroplasty using the Exeter V40 stem with a variety of acetabular components one year post surgery, whole blood chromium levels are normal and serum cobalt elevations are rare and mild.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper demonstrates a renewed procedure for the quantification of surface-enhanced Raman scattering (SERS) enhancement factors with improved precision. The principle of this method relies on deducting the resonance Raman scattering (RRS) contribution from surface-enhanced resonance Raman scattering (SERRS) to end up with the surface enhancement (SERS) effect alone. We employed 1,8,15,22-tetraaminophthalocyanato-cobalt(II) (4α-CoIITAPc), a resonance Raman- and electrochemically redox-active chromophore, as a probe molecule for RRS and SERRS experiments. The number of 4α-CoIITAPc molecules contributing to RRS and SERRS phenomena on plasmon inactive glassy carbon (GC) and plasmon active GC/Au surfaces, respectively, has been precisely estimated by cyclic voltammetry experiments. Furthermore, the SERS substrate enhancement factor (SSEF) quantified by our approach is compared with the traditionally employed methods. We also demonstrate that the present approach of SSEF quantification can be applied for any kind of different SERS substrates by choosing an appropriate laser line and probe molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis of imines from amines and aliphatic alcohols (C1–C6) in the presence of base on supported palladium nanoparticles has been achieved for the first time. The catalytic system shows high activity and selectivity in open air at room temperature. As an example of the isostructural Ln3Sb3Co2O14 (Ln: La, Pr, Nd, Sm—Ho) series with an ordered pyrochlore structure, the La variant is prepared by a citrate complex method employing stoichiometric amounts of La(NO3)3, Co(NO3)2, and Sb tartrate together with citric acid with a metal/citrate molar ratio of 1:2