555 resultados para 090199 Aerospace Engineering not elsewhere classified
Resumo:
Invited presentation made to the New Zealand Robotic Systems Network Conference. The presentation provides an overview of the Unmanned Aircraft Systems industry, civil applications for the technology, some current research activity and the UAS industry initiatives in the Australia.
Resumo:
Hybrid system representations have been applied to many challenging modeling situations. In these hybrid system representations, a mixture of continuous and discrete states is used to capture the dominating behavioural features of a nonlinear, possible uncertain, model under approximation. Unfortunately, the problem of how to best design a suitable hybrid system model has not yet been fully addressed. This paper proposes a new joint state measurement relative entropy rate based approach for this design purpose. Design examples and simulation studies are presented which highlight the benefits of our proposed design approaches.
Resumo:
The safety risk management process describes the systematic application of management policies, procedures and practices to the activities of communicating, consulting, establishing the context, and identifying, analysing, evaluating, treating, monitoring and reviewing risk. This process is undertaken to provide assurances that the risks of a particular unmanned aircraft system activity have been managed to an acceptable level. The safety risk management process and its outcomes form part of the documented safety case necessary to obtain approvals for unmanned aircraft system operations. It also guides the development of an organisation’s operations manual and is a primary component of an organisation’s safety management system. The aim of this chapter is to provide existing risk practitioners with a high level introduction to some of the unique issues and challenges in the application of the safety risk management process to unmanned aircraft systems. The scope is limited to safety risks associated with the operation of unmanned aircraft in the civil airspace system and over inhabited areas. The structure of the chapter is based on the safety risk management process as defined by the international risk management standard ISO 31000:2009 and draws on aviation safety resources provided by International Civil Aviation Organization, the Federal Aviation Administration and U.S. Department of Defense. References to relevant aviation safety regulations, programs of research and fielded systems are also provided.
Resumo:
Unmanned Aircraft Systems (UAS) are one of a number of emerging aviation sectors. Such new aviation concepts present a significant challenge to National Aviation Authorities (NAAs) charged with ensuring the safety of their operation within the existing airspace system. There is significant heritage in the existing body of aviation safety regulations for Conventionally Piloted Aircraft (CPA). It can be argued that the promulgation of these regulations has delivered a level of safety tolerable to society, thus justifying the “default position” of applying these same standards, regulations and regulatory structures to emerging aviation concepts such as UAS. An example of this is the proposed “1309” regulation for UAS, which is based on the 1309 regulation for CPA. However, the absence of a pilot on-board an unmanned aircraft creates a fundamentally different risk paradigm to that of CPA. An appreciation of these differences is essential to the justification of the “default position” and in turn, to ensure the development of effective safety standards and regulations for UAS. This paper explores the suitability of the proposed “1309” regulation for UAS. A detailed review of the proposed regulation is provided and a number of key assumptions are identified and discussed. A high-level model characterising the expected number of third party fatalities on the ground is then used to determine the impact of these assumptions. The results clearly show that the “one size fits all” approach to the definition of 1309 regulations for UAS, which mandates equipment design and installation requirements independent of where the UAS is to be operated, will not lead to an effective management of the risks.
Resumo:
This paper investigates a mixed centralised-decentralised air traffic separation management system, which combines the best features of the centralised and decentralised systems whilst ensuring the reliability of the air traffic management system during degraded conditions. To overcome communication band limits, we propose a mixed separation manager on the basis of a robust decision (or min-max) problem that is posed on a reduced set of admissible flight avoidance manoeuvres (or a FAM alphabet). We also present a design method for selecting an appropriate FAM alphabet for use in the mixed separation management system. Simulation studies are presented to illustrate the benefits of our proposed FAM alphabet based mixed separation manager.
Resumo:
With the emergence of Unmanned Aircraft Systems (UAS) there is a growing need for safety standards and regulatory frameworks to manage the risks associated with their operations. The primary driver for airworthiness regulations (i.e., those governing the design, manufacture, maintenance and operation of UAS) are the risks presented to people in the regions overflown by the aircraft. Models characterising the nature of these risks are needed to inform the development of airworthiness regulations. The output from these models should include measures of the collective, individual and societal risk. A brief review of these measures is provided. Based on the review, it was determined that the model of the operation of an UAS over inhabited areas must be capable of describing the distribution of possible impact locations, given a failure at a particular point in the flight plan. Existing models either do not take the impact distribution into consideration, or propose complex and computationally expensive methods for its calculation. A computationally efficient approach for estimating the boundary (and in turn area) of the impact distribution for fixed wing unmanned aircraft is proposed. A series of geometric templates that approximate the impact distributions are derived using an empirical analysis of the results obtained from a 6-Degree of Freedom (6DoF) simulation. The impact distributions can be aggregated to provide impact footprint distributions for a range of generic phases of flight and missions. The maximum impact footprint areas obtained from the geometric template are shown to have a relative error of typically less than 1% compared to the areas calculated using the computationally more expensive 6DoF simulation. Computation times for the geometric models are on the order of one second or less, using a standard desktop computer. Future work includes characterising the distribution of impact locations within the footprint boundaries.
Resumo:
This paper presents a new approach for the inclusion of human expert cognition into autonomous trajectory planning for unmanned aerial systems (UASs) operating in low-altitude environments. During typical UAS operations, multiple objectives may exist; therefore, the use of multicriteria decision aid techniques can potentially allow for convergence to trajectory solutions which better reflect overall mission requirements. In that context, additive multiattribute value theory has been applied to optimize trajectories with respect to multiple objectives. A graphical user interface was developed to allow for knowledge capture from a human decision maker (HDM) through simulated decision scenarios. The expert decision data gathered are converted into value functions and corresponding criteria weightings using utility additive theory. The inclusion of preferences elicited from HDM data within an automated decision system allows for the generation of trajectories which more closely represent the candidate HDM decision preferences. This approach has been demonstrated in this paper through simulation using a fixed-wing UAS operating in low-altitude environments.
Resumo:
The problem of estimating pseudobearing rate information of an airborne target based on measurements from a vision sensor is considered. Novel image speed and heading angle estimators are presented that exploit image morphology, hidden Markov model (HMM) filtering, and relative entropy rate (RER) concepts to allow pseudobearing rate information to be determined before (or whilst) the target track is being estimated from vision information.
Resumo:
This paper details the initial design and planning of a Field Programmable Gate Array (FPGA) implemented control system that will enable a path planner to interact with a MAVLink based flight computer. The design is aimed at small Unmanned Aircraft Vehicles (UAV) under autonomous operation which are typically subject to constraints arising from limited on-board processing capabilities, power and size. An FPGA implementation for the de- sign is chosen for its potential to address such limitations through low power and high speed in-hardware computation. The MAVLink protocol offers a low bandwidth interface for the FPGA implemented path planner to communicate with an on-board flight computer. A control system plan is presented that is capable of accepting a string of GPS waypoints generated on-board from a previously developed in- hardware Genetic Algorithm (GA) path planner and feeding them to the open source PX4 autopilot, while simultaneously respond- ing with flight status information.
Resumo:
Hybrid powerplants combining internal combustion engines and electric motor prime movers have been extensively developed for land- and marine-based transport systems. The use of such powerplants in airborne applications has been historically impractical due to energy and power density constraints. Improvements in battery and electric motor technology make aircraft hybrid powerplants feasible. This paper presents a technique for determining the feasibility and mechanical effectiveness of powerplant hybridisation. In this work, a prototype aircraft hybrid powerplant was designed, constructed and tested. It is shown that an additional 35% power can be supplied from the hybrid system with an overall weight penalty of 5%, for a given unmanned aerial system. A flight dynamic model was developed using the AeroSim Blockset in MATLAB Simulink. The results have shown that climb rates can be improved by 56% and endurance increased by 13% when using the hybrid powerplant concept.
Resumo:
Design Proposal for the Blue Lunar Support Hub The conceptual design of a space station is one of the most challenging tasks in aerospace engineering. The history of the space station Mir and the assembly of the International Space Station demonstrate that even within the assembly phase quick solutions have to be found to cope with budget and technical problems or changing objectives. This report is the outcome of the conceptual design of the Space Station Design Workshop (SSDW) 2007, which took place as an international design project from the 16th to the 21st of July 2007 at the Australian Centre for Field Robotics (ACFR), University of Sydney, Australia. The participants were tasked to design a human-tended space station in low lunar orbit (LLO) focusing on supporting future missions to the moon in a programmatic context of space exploration beyond low Earth orbit (LEO). The design included incorporating elements from systems engineering to interior architecture. The customised, intuitive, rapid-turnaround software tools enabled the team to successfully tackle the complex problem of conceptual design of crewed space systems. A strong emphasis was put on improving the integration of the human crew, as it is the major contributor to mission success, while always respecting the boundary conditions imposed by the challenging environment of space. This report documents the methodology, tools and outcomes of the Space Station Design Workshop during the SSDW 2007. The design results produced by Team Blue are presented.
Resumo:
Governments and intergovernmental organisations have long recognised that space communities – the ultimate ‘settlements at the edge’ – will exist one day and have based their first plans for these on another region ‘at the edge’, the Antarctic. United States President Eisenhower proposed to the United Nations in 1960 that the principles of the Antarctic Treaty be applied to outer space and celestial bodies (State Department, n.d.). Three years later the UN adopted the Declaration of Legal Principles Governing the Activities of States in the Exploration and Use of Outer Space and in 1967 that became the Outer Space Treaty. According to the UN Office for Outer Space Affairs, ‘the Treaty was opened for signature by the three depository Governments (the Russian Federation, the United Kingdom and the United States of America) in January 1967, and it entered into force in October 1967’ (Office for Outer Space Affairs, n.d). The status of the treaty (at time of writing) was 89 signatories and 102 parties (Office for Disarmament Affairs, n.d.). Other related instruments include the Rescue Agreement, the Liability Convention, the Registration Convention and the Moon Agreement (Office for Outer Space Affairs, n.d.-a). Jumping to the present, a newsagency reported in July 2014 (Reuters, 2014) that the British Government had shortlisted eight aerodromes in its search for a potential base for the UK’s first spaceplane flights which Ministers want to happen by 2018 (UK Space Agency, 2014). The United States already has a spaceport, in New Mexico (Cokley, Rankin, Heinrich, & McAuliffe, 2013)...
Resumo:
There is a growing need for international transparency of engineering qualifications, and mechanisms to support and facilitate student mobility. In response, there are a number of global initiatives attempting to address these needs, particularly in Europe, North America and Australia. The Conceive-Design-Implement-Operate (CDIO) Initiative has a set of standards, competencies, and proficiency levels developed through a global community of practice. It is a well-structured framework in which best-practice internationalisation and student mobility can be embedded. However, the current 12 CDIO Standards do not address international qualifications or student mobility. Based on an environmental scan of global activities, the underpinning principles of best practice are identified and form the basis of the proposed 13th CDIO Standard — “Internationalization and Mobility”.
Resumo:
The CDIO Initiative has been globally recognised as an enabler for engineering education reform. With the CDIO process, the CDIO Standards and the CDIO Syllabus, many scholarly contributions have been made around cultural change, curriculum reform and learning environments. In the Australasian region, reform is gaining significant momentum within the engineering education community, the profession, and higher education institutions. This paper presents the CDIO Syllabus cast into the Australian context by mapping it to the Engineers Australia Graduate Attributes, the Washington Accord Graduate Attributes and the Queensland University of Technology Graduate Capabilities. Furthermore, in recognition that many secondary schools and technical training institutions offer introductory engineering technology subjects, this paper presents an extended self-rating framework suited for recognising developing levels of proficiency at a preparatory level. The framework is consistent with conventional application to undergraduate programs and professional practice, but adapted for the preparatory context. As with the original CDIO framework with proficiency levels, this extended framework is informed by Bloom’s Educational Objectives. A proficiency evaluation of Queensland Study Authority’s Engineering Technology senior syllabus is demonstrated indicating proficiency levels embedded within this secondary school subject within a preparatory scope. Through this extended CDIO framework, students and faculty have greater awareness and access to tools to promote (i) student engagement in their own graduate capability development, (ii) faculty engagement in course and program design, through greater transparency and utility of the continuum of graduate capability development with associate levels of proficiency, and the context in which they exist in terms of pre-tertiary engineering studies; and (iii) course maintenance and quality audit methodology for the purpose of continuous improvement processes and program accreditation.