284 resultados para tree structured business data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of big data has already outperformed traditional data management efforts in almost all industries. Other instances it has succeeded in obtaining promising results that provide value from large-scale integration and analysis of heterogeneous data sources for example Genomic and proteomic information. Big data analytics have become increasingly important in describing the data sets and analytical techniques in software applications that are so large and complex due to its significant advantages including better business decisions, cost reduction and delivery of new product and services [1]. In a similar context, the health community has experienced not only more complex and large data content, but also information systems that contain a large number of data sources with interrelated and interconnected data attributes. That have resulted in challenging, and highly dynamic environments leading to creation of big data with its enumerate complexities, for instant sharing of information with the expected security requirements of stakeholders. When comparing big data analysis with other sectors, the health sector is still in its early stages. Key challenges include accommodating the volume, velocity and variety of healthcare data with the current deluge of exponential growth. Given the complexity of big data, it is understood that while data storage and accessibility are technically manageable, the implementation of Information Accountability measures to healthcare big data might be a practical solution in support of information security, privacy and traceability measures. Transparency is one important measure that can demonstrate integrity which is a vital factor in the healthcare service. Clarity about performance expectations is considered to be another Information Accountability measure which is necessary to avoid data ambiguity and controversy about interpretation and finally, liability [2]. According to current studies [3] Electronic Health Records (EHR) are key information resources for big data analysis and is also composed of varied co-created values [3]. Common healthcare information originates from and is used by different actors and groups that facilitate understanding of the relationship for other data sources. Consequently, healthcare services often serve as an integrated service bundle. Although a critical requirement in healthcare services and analytics, it is difficult to find a comprehensive set of guidelines to adopt EHR to fulfil the big data analysis requirements. Therefore as a remedy, this research work focus on a systematic approach containing comprehensive guidelines with the accurate data that must be provided to apply and evaluate big data analysis until the necessary decision making requirements are fulfilled to improve quality of healthcare services. Hence, we believe that this approach would subsequently improve quality of life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital technology offers enormous benefits (economic, quality of design and efficiency in use) if adopted to implement integrated ways of representing the physical world in a digital form. When applied across the full extent of the built and natural world, it is referred to as the Digital Built Environment (DBE) and encompasses a wide range of approaches and technology initiatives, all aimed at the same end goal: the development of a virtual world that sufficiently mirrors the real world to form the basis for the smart cities of the present and future, enable efficient infrastructure design and programmed maintenance, and create a new foundation for economic growth and social well-being through evidence-based analysis. The creation of a National Data Policy for the DBE will facilitate the creation of additional high technology industries in Australia; provide Governments, industries and citizens with greater knowledge of the environments they occupy and plan; and offer citizen-driven innovations for the future. Australia has slipped behind other nations in the adoption and execution of Building Information Modelling (BIM) and the principal concern is that the gap is widening. Data driven innovation added $67 billion to the Australian economy in 20131. Strong open data policy equates to $16 billion in new value2. Australian Government initiatives such as the Digital Earth inspired “National Map” offer a platform and pathway to embrace the concept of a “BIM Globe”, while also leveraging unprecedented growth in open source / open data collaboration. Australia must address the challenges by learning from international experiences—most notably the UK and NZ—and mandate the use of BIM across Government, extending the Framework for Spatial Data Foundation to include the Built Environment as a theme and engaging collaboration through a “BIM globe” metaphor. This proposed DBE strategy will modernise the Australian urban planning and the construction industry. It will change the way we develop our cities by fundamentally altering the dynamics and behaviours of the supply chains and unlocking new and more efficient ways of collaborating at all stages of the project life-cycle. There are currently two major modelling approaches that contribute to the challenge of delivering the DBE. Though these collectively encompass many (often competing) approaches or proprietary software systems, all can be categorised as either: a spatial modelling approach, where the focus is generally on representing the elements that make up the world within their geographic context; and a construction modelling approach, where the focus is on models that support the life cycle management of the built environment. These two approaches have tended to evolve independently, addressing two broad industry sectors: the one concerned with understanding and managing global and regional aspects of the world that we inhabit, including disciplines concerned with climate, earth sciences, land ownership, urban and regional planning and infrastructure management; the other is concerned with planning, design, construction and operation of built facilities and includes architectural and engineering design, product manufacturing, construction, facility management and related disciplines (a process/technology commonly known as Building Information Modelling, BIM). The spatial industries have a strong voice in the development of public policy in Australia, while the construction sector, which in 2014 accounted for around 8.5% of Australia’s GDP3, has no single voice and because of its diversity, is struggling to adapt to and take advantage of the opportunity presented by these digital technologies. The experience in the UK over the past few years has demonstrated that government leadership is very effective in stimulating industry adoption of digital technologies by, on the one hand, mandating the use of BIM on public procurement projects while at the same time, providing comparatively modest funding to address the common issues that confront the industry in adopting that way of working across the supply chain. The reported result has been savings of £840m in construction costs in 2013/14 according to UK Cabinet Office figures4. There is worldwide recognition of the value of bringing these two modelling technologies together. Australia has the expertise to exercise leadership in this work, but it requires a commitment by government to recognise the importance of BIM as a companion methodology to the spatial technologies so that these two disciplinary domains can cooperate in the development of data policies and information exchange standards to smooth out common workflows. buildingSMART Australasia, SIBA and their academic partners have initiated this dialogue in Australia and wish to work collaboratively, with government support and leadership, to explore the opportunities open to us as we develop an Australasian Digital Built Environment. As part of that programme, we must develop and implement a strategy to accelerate the adoption of BIM processes across the Australian construction sector while at the same time, developing an integrated approach in concert with the spatial sector that will position Australia at the forefront of international best practice in this area. Australia and New Zealand cannot afford to be on the back foot as we face the challenges of rapid urbanisation and change in the global environment. Although we can identify some exemplary initiatives in this area, particularly in New Zealand in response to the need for more resilient urban development in the face of earthquake threats, there is still much that needs to be done. We are well situated in the Asian region to take a lead in this challenge, but we are at imminent risk of losing the initiative if we do not take action now. Strategic collaboration between Governments, Industry and Academia will create new jobs and wealth, with the potential, for example, to save around 20% on the delivery costs of new built assets, based on recent UK estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid increase in migration into host countries and the growth of immigrant-owned business enterprises has revitalized research on ethnic business. Does micro (individual)-level social capital, or meso (group)-level location within the ethnic enclave lead to immigrant business growth? Or do you need both? We analyze quantitative data collected from 110 Chinese restaurants in Australia, a major host country. At the micro level we find that coethnic (same ethnic group) networks are critical to the growth of an immigrant entrepreneur's business, particularly in the early years. But non-coethnic (different ethnic group) social capital only has a positive impact on business growth for immigrant businesses outside the ethnic enclave. Our findings are relevant, not only to host-country policymakers, but also for future immigrant business owners and ethnic community leaders trying to better understand how to promote healthy communities and sustainable economic growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent trend for journals to require open access to primary data included in publications has been embraced by many biologists, but has caused apprehension amongst researchers engaged in long-term ecological and evolutionary studies. A worldwide survey of 73 principal investigators (Pls) with long-term studies revealed positive attitudes towards sharing data with the agreement or involvement of the PI, and 93% of PIs have historically shared data. Only 8% were in favor of uncontrolled, open access to primary data while 63% expressed serious concern. We present here their viewpoint on an issue that can have non-trivial scientific consequences. We discuss potential costs of public data archiving and provide possible solutions to meet the needs of journals and researchers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores consumer behavioural patterns on a magazine website. By using a unique dataset of real-life click stream data from 295 magazine website visitors, interesting behavioural patterns are noted: most importantly, 86 % of all sessions only visit the blogs hosted by the magazine. This means that the visitors short-circuit the start page and are not exposed to any editorial content at all, and consequently not to any commercial content on those pages. Sessions visiting editorial content, commercial content or social media links actually represent only one (1) per cent or less of all sessions recorded. Consequently, the online platform gives very limited support for the business model. Our data questions the general assumption that online platforms are key components of a contemporary magazine’s business model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores consumer behavioural patterns on a magazine website. By using a unique dataset of real-life click stream data from 295 magazine website visitors, individual sessions are grouped according to the different sections visited on the websites. Interesting behavioural patterns are noted: most importantly, 86 % of all sessions only visit the blogs. This means that the visitors are not exposed to any editorial content at all, and choose to avoid also commercial contents. Sessions visiting editorial content, commercial content or social media links are very few in numbers (each 1 per cent or less of the sessions), thus giving only very limited support to the magazine business model. We noted that consumer behaviour on the magazine website seems to be very goal-oriented and instrumental, rather than exploratory and ritualized. This paper contributes to the current knowledge of media management by shedding light on consumer behaviour on media websites, and opening up the challenges with current media business models. From a more practical perspective, our data questions the general assumption of online platforms as supporter of the print business.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes a maximum likelihood method for estimating the parameters of the standard square-root stochastic volatility model and a variant of the model that includes jumps in equity prices. The model is fitted to data on the S&P 500 Index and the prices of vanilla options written on the index, for the period 1990 to 2011. The method is able to estimate both the parameters of the physical measure (associated with the index) and the parameters of the risk-neutral measure (associated with the options), including the volatility and jump risk premia. The estimation is implemented using a particle filter whose efficacy is demonstrated under simulation. The computational load of this estimation method, which previously has been prohibitive, is managed by the effective use of parallel computing using graphics processing units (GPUs). The empirical results indicate that the parameters of the models are reliably estimated and consistent with values reported in previous work. In particular, both the volatility risk premium and the jump risk premium are found to be significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Big Data and predictive analytics have received significant attention from the media and academic literature throughout the past few years, and it is likely that these emerging technologies will materially impact the mining sector. This short communication argues, however, that these technological forces will probably unfold differently in the mining industry than they have in many other sectors because of significant differences in the marginal cost of data capture and storage. To this end, we offer a brief overview of what Big Data and predictive analytics are, and explain how they are bringing about changes in a broad range of sectors. We discuss the “N=all” approach to data collection being promoted by many consultants and technology vendors in the marketplace but, by considering the economic and technical realities of data acquisition and storage, we then explain why a “n « all” data collection strategy probably makes more sense for the mining sector. Finally, towards shaping the industry’s policies with regards to technology-related investments in this area, we conclude by putting forward a conceptual model for leveraging Big Data tools and analytical techniques that is a more appropriate fit for the mining sector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The explosive growth in the development of Traditional Chinese Medicine (TCM) has resulted in the continued increase in clinical and research data. The lack of standardised terminology, flaws in data quality planning and management of TCM informatics are preventing clinical decision-making, drug discovery and education. This paper argues that the introduction of data warehousing technologies to enhance the effectiveness and durability in TCM is paramount. To showcase the role of data warehousing in the improvement of TCM, this paper presents a practical model for data warehousing with detailed explanation, which is based on the structured electronic records, for TCM clinical researches and medical knowledge discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – Business models to date have remained the creation of management, however, it is the belief of the authors that designers should be critically approaching, challenging and creating new business models as part of their practice. This belief portrays a new era where business model constructs become the new design brief of the future and fuel design and innovation to work together at the strategic level of an organisation. Design/methodology/approach – The purpose of this paper is to explore and investigate business model design. The research followed a deductive structured qualitative content analysis approach utilizing a predetermined categorization matrix. The analysis of forty business cases uncovered commonalities of key strategic drivers behind these innovative business models. Findings – Five business model typologies were derived from this content analysis, from which quick prototypes of new business models can be created. Research limitations/implications – Implications from this research suggest there is no “one right” model, but rather through experimentation, the generation of many unique and diverse concepts can result in greater possibilities for future innovation and sustained competitive advantage. Originality/value – This paper builds upon the emerging research and exploration into the importance and relevance of dynamic, design-driven approaches to the creation of innovative business models. These models aim to synthesize knowledge gained from real world examples into a tangible, accessible and provoking framework that provide new prototyping templates to aid the process of business model experimentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The National Road Safety Partnership Program (NRSPP) is an industry-led collaborative network which aims to support Australian businesses in developing a positive road safety culture. It aims to help businesses to protect their employees and the public, not only during work hours, but also when their staff are ‘off-duty’. How do we engage and help an organisation minimise work-related vehicle crashes and their consequences both internally, and within the broader community? The first step is helping an organisation to understand the true cost of its road incidents. Larger organisations often wear the costs without knowing the true impact to their bottom line. All they perceive is the change in insurance or vehicle repairs. Understanding the true cost should help mobilise a business’s leadership to do more. The next step is ensuring the business undertakes an informed, structured, evidence-based pathway which will guide them around the costly pitfalls. A pathway based around the safe system approach with buy-in at the top which brings the workforce along. The final step, benchmarking, allows the organisation to measure and track its change. This symposium will explore the pathway steps for organisations using NRSPP resources to become engaged in road safety. The 'Total Cost of Risk' calculator has been developed by Zurich, tested in Europe by Nestle and modified by NRSPP for Australia. This provides the first crucial step. The next step is a structured approach through the Workplace Road Safety Guide using experts and industry to discuss the preferred safe system approach which can then link into the national Benchmarking Project. The outputs from the symposium can help frame a pathway for organisations to follow through the NRSPP website.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive a new method for determining size-transition matrices (STMs) that eliminates probabilities of negative growth and accounts for individual variability. STMs are an important part of size-structured models, which are used in the stock assessment of aquatic species. The elements of STMs represent the probability of growth from one size class to another, given a time step. The growth increment over this time step can be modelled with a variety of methods, but when a population construct is assumed for the underlying growth model, the resulting STM may contain entries that predict negative growth. To solve this problem, we use a maximum likelihood method that incorporates individual variability in the asymptotic length, relative age at tagging, and measurement error to obtain von Bertalanffy growth model parameter estimates. The statistical moments for the future length given an individual's previous length measurement and time at liberty are then derived. We moment match the true conditional distributions with skewed-normal distributions and use these to accurately estimate the elements of the STMs. The method is investigated with simulated tag-recapture data and tag-recapture data gathered from the Australian eastern king prawn (Melicertus plebejus).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We formalise and present a new generic multifaceted complex system approach for modelling complex business enterprises. Our method has a strong focus on integrating the various data types available in an enterprise which represent the diverse perspectives of various stakeholders. We explain the challenges faced and define a novel approach to converting diverse data types into usable Bayesian probability forms. The data types that can be integrated include historic data, survey data, and management planning data, expert knowledge and incomplete data. The structural complexities of the complex system modelling process, based on various decision contexts, are also explained along with a solution. This new application of complex system models as a management tool for decision making is demonstrated using a railway transport case study. The case study demonstrates how the new approach can be utilised to develop a customised decision support model for a specific enterprise. Various decision scenarios are also provided to illustrate the versatility of the decision model at different phases of enterprise operations such as planning and control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Being able to accurately predict the risk of falling is crucial in patients with Parkinson’s dis- ease (PD). This is due to the unfavorable effect of falls, which can lower the quality of life as well as directly impact on survival. Three methods considered for predicting falls are decision trees (DT), Bayesian networks (BN), and support vector machines (SVM). Data on a 1-year prospective study conducted at IHBI, Australia, for 51 people with PD are used. Data processing are conducted using rpart and e1071 packages in R for DT and SVM, con- secutively; and Bayes Server 5.5 for the BN. The results show that BN and SVM produce consistently higher accuracy over the 12 months evaluation time points (average sensitivity and specificity > 92%) than DT (average sensitivity 88%, average specificity 72%). DT is prone to imbalanced data so needs to adjust for the misclassification cost. However, DT provides a straightforward, interpretable result and thus is appealing for helping to identify important items related to falls and to generate fallers’ profiles.