Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method


Autoria(s): Leung, Denis H. Y.; Wang, You-Gan; Zhu, Min
Data(s)

2009

Resumo

The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.

Identificador

http://eprints.qut.edu.au/90454/

Publicador

Oxford University Press

Relação

DOI:10.1093/biostatistics/kxp002

Leung, Denis H. Y., Wang, You-Gan, & Zhu, Min (2009) Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method. Biostatistics, 10(3), pp. 436-445.

Fonte

QUT Business School; Science & Engineering Faculty

Palavras-Chave #Empirical likelihood #Generalized estimating equations #Longitudinal #data #generalized estimating equations #empirical likelihood #clustered data #linear-models #binary data #regression
Tipo

Journal Article