269 resultados para Frequent mining
Resumo:
This paper discusses some of the sensing technologies available for guiding robot manipulators for a class of underground mining tasks including drilling jumbos, bolting arms, shotcreters or explosive chargers. Data acquired with such sensors, in the laboratory and underground, is presented.
Resumo:
Draglines are extremely large machines that are widely used in open-cut coal mines for overburden stripping. Since 1994 we have been working toward the development of a computer control system capable of automatically driving a dragline for a large portion of its operating cycle. This has necessitated the development and experimental evaluation of sensor systems, machines models, closed-loop control controllers, and an operator interface. This paper describes our steps toward the goal through scale-model and full-scale field experimentation.
Resumo:
The mining industry is highly suitable for the application of robotics and automation technology since the work is arduous, dangerous and often repetitive. This paper describes the development of an automation system for a physically large and complex field robotic system - a 3,500 tonne mining machine (a dragline). The major components of the system are discussed with a particular emphasis on the machine/operator interface. A very important aspect of this system is that it must work cooperatively with a human operator, seamlessly passing the control back and forth in order to achieve the main aim - increased productivity.
Resumo:
The mining industry is highly suitable for the application of robotics and automation technology since the work is both arduous and dangerous. Visual servoing is a means of integrating noncontact visual sensing with machine control to augment or replace operator based control. This article describes two of our current mining automation projects in order to demonstrate some, perhaps unusual, applications of visual servoing, and also to illustrate some very real problems with robust computer vision
Resumo:
This paper presents visual detection and classification of light vehicles and personnel on a mine site.We capitalise on the rapid advances of ConvNet based object recognition but highlight that a naive black box approach results in a significant number of false positives. In particular, the lack of domain specific training data and the unique landscape in a mine site causes a high rate of errors. We exploit the abundance of background-only images to train a k-means classifier to complement the ConvNet. Furthermore, localisation of objects of interest and a reduction in computation is enabled through region proposals. Our system is tested on over 10km of real mine site data and we were able to detect both light vehicles and personnel. We show that the introduction of our background model can reduce the false positive rate by an order of magnitude.
Resumo:
A large range of underground mining equipment makes use of compliant hydraulic arms for tasks such as rock-bolting, rock breaking, explosive charging and shotcreting. This paper describes a laboratory model electo-hydraulic manipulator which is used to prototype novel control and sensing techniques. The research is aimed at improving the safety and productivity of these mining tasks through automation, in particular the application of closed-loop visual positioning of the machine's end-effector.
Resumo:
The mining industry presents us with a number of ideal applications for sensor based machine control because of the unstructured environment that exists within each mine. The aim of the research presented here is to increase the productivity of existing large compliant mining machines by retrofitting with enhanced sensing and control technology. The current research focusses on the automatic control of the swing motion cycle of a dragline and an automated roof bolting system. We have achieved: * closed-loop swing control of an one-tenth scale model dragline; * single degree of freedom closed-loop visual control of an electro-hydraulic manipulator in the lab developed from standard components.
Resumo:
This research proposes a multi-dimensional model for Opinion Mining, which integrates customers' characteristics and their opinions about products (or services). Customer opinions are valuable for companies to deliver right products or services to their customers. This research presents a comprehensive framework to evaluate opinions' orientation based on products' hierarchy attributes. It also provides an alternative way to obtain opinion summaries for different groups of customers and different categories of produces.
Resumo:
This paper discusses some of the sensing technologies and control approaches available for guiding robot manipulators for a class of underground mining tasks including drilling jumbos, bolting arms, shotcreters or explosive chargers. Data acquired with such sensors, in the laboratory and underground, is presented.
Resumo:
Effectively capturing opportunities requires rapid decision-making. We investigate the speed of opportunity evaluation decisions by focusing on firms' venture termination and venture advancement decisions. Experience, standard operating procedures, and confidence allow firms to make opportunity evaluation decisions faster; we propose that a firm's attentional orientation, as reflected in its project portfolio, limits the number of domains in which these speed-enhancing mechanisms can be developed. Hence firms' decision speed is likely to vary between different types of decisions. Using unique data on 3,269 mineral exploration ventures in the Australian mining industry, we find that firms with a higher degree of attention toward earlier-stage exploration activities are quicker to abandon potential opportunities in early development but slower to do so later, and that such firms are also slower to advance on potential opportunities at all stages compared to firms that focus their attention differently. Market dynamism moderates these relationships, but only with regard to initial evaluation decisions. Our study extends research on decision speed by showing that firms are not necessarily fast or slow regarding all the decisions they make, and by offering an opportunity evaluation framework that recognizes that decision makers can, in fact often do, pursue multiple potential opportunities simultaneously.
Resumo:
This research contributes novel techniques for identifying and evaluating business process risks and analysing human resource behaviour. The developed techniques use predefined indicators to identify process risks in individual process instances, evaluate overall process risk, predict process outcomes and analyse human resource behaviour based on the analysis of information about process executions recorded in event logs by information systems. The results of this research can help managers to more accurately evaluate the risk exposure of their business processes, to more objectively evaluate the performance of their employees, and to identify opportunities for improvement of resource and process performance.
Resumo:
Purpose Following the perspective of frustration theory customer frustration incidents lead to frustration behavior such as protest (negative word‐of‐mouth). On the internet customers can express their emotions verbally and non‐verbally in numerous web‐based review platforms. The purpose of this study is to investigate online dysfunctional customer behavior, in particular negative “word‐of‐web” (WOW) in online feedback forums, among customers who participate in frequent‐flier programs in the airline industry. Design/methodology/approach The study employs a variation of the critical incident technique (CIT) referred to as the critical internet feedback technique (CIFT). Qualitative data of customer reviews of 13 different frequent‐flier programs posted on the internet were collected and analyzed with regard to frustration incidents, verbal and non‐verbal emotional effects and types of dysfunctional word‐of‐web customer behavior. The sample includes 141 negative customer reviews based on non‐recommendations and low program ratings. Findings Problems with loyalty programs evoke negative emotions that are expressed in a spectrum of verbal and non‐verbal negative electronic word‐of‐mouth. Online dysfunctional behavior can vary widely from low ratings and non‐recommendations to voicing switching intentions to even stronger forms such as manipulation of others and revenge intentions. Research limitations/implications Results have to be viewed carefully due to methodological challenges with regard to the measurement of emotions, in particular the accuracy of self‐report techniques and the quality of online data. Generalization of the results is limited because the study utilizes data from only one industry. Further research is needed with regard to the exact differentiation of frustration from related constructs. In addition, large‐scale quantitative studies are necessary to specify and test the relationships between frustration incidents and subsequent dysfunctional customer behavior expressed in negative word‐of‐web. Practical implications The study yields important implications for the monitoring of the perceived quality of loyalty programs. Management can obtain valuable information about program‐related and/or relationship‐related frustration incidents that lead to online dysfunctional customer behavior. A proactive response strategy should be developed to deal with severe cases, such as sabotage plans. Originality/value This study contributes to knowledge regarding the limited research of online dysfunctional customer behavior as well as frustration incidents of loyalty programs. Also, the article presents a theoretical “customer frustration‐defection” framework that describes different levels of online dysfunctional behavior in relation to the level of frustration sensation that customers have experienced. The framework extends the existing perspective of the “customer satisfaction‐loyalty” framework developed by Heskett et al.
Resumo:
Product reviews are the foremost source of information for customers and manufacturers to help them make appropriate purchasing and production decisions. Natural language data is typically very sparse; the most common words are those that do not carry a lot of semantic content, and occurrences of any particular content-bearing word are rare, while co-occurrences of these words are rarer. Mining product aspects, along with corresponding opinions, is essential for Aspect-Based Opinion Mining (ABOM) as a result of the e-commerce revolution. Therefore, the need for automatic mining of reviews has reached a peak. In this work, we deal with ABOM as sequence labelling problem and propose a supervised extraction method to identify product aspects and corresponding opinions. We use Conditional Random Fields (CRFs) to solve the extraction problem and propose a feature function to enhance accuracy. The proposed method is evaluated using two different datasets. We also evaluate the effectiveness of feature function and the optimisation through multiple experiments.
Resumo:
In recent years a significant amount of research has been undertaken in collision avoidance and personnel location technology in order to reduce the number of incidents involving pedestrians and mobile plant equipment which are a high risk in underground coal mines. Improving the visibility of pedestrians to drivers would potentially reduce the likelihood of these incidents. In the road safety context, a variety of approaches have been used to make pedestrians more conspicuous to drivers at night (including vehicle and roadway lighting technologies and night vision enhancement systems). However, emerging research from our group and others has demonstrated that clothing incorporating retroreflective markers on the movable joints as well as the torso can provide highly significant improvements in pedestrian visibility in reduced illumination. Importantly, retroreflective markers are most effective when positioned on the moveable joints creating a sensation of “biological motion”. Based only on the motion of points on the moveable joints of an otherwise invisible body, observers can quickly recognize a walking human form, and even correctly judge characteristics such as gender and weight. An important and as yet unexplored question is whether the benefits of these retroreflective clothing configurations translate to the context of mining where workers are operating under low light conditions. Given that the benefits of biomotion clothing are effective for both young and older drivers, as well as those with various eye conditions common in those >50 years reinforces their potential application in the mining industry which employs many workers in this age bracket. This paper will summarise the visibility benefits of retroreflective markers in a biomotion configuration for the mining industry, highlighting that this form of clothing has the potential to be an affordable and convenient way to provide a sizeable safety benefit. It does not involve modifications to vehicles, drivers, or infrastructure. Instead, adding biomotion markings to standard retroreflective vests can enhance the night-time conspicuity of mining workers by capitalising on perceptual capabilities that have already been well documented.
Resumo:
In the mining optimisation literature, most researchers focused on two strategic-level and tactical-level open-pit mine optimisation problems, which are respectively termed ultimate pit limit (UPIT) or constrained pit limit (CPIT). However, many researchers indicate that the substantial numbers of variables and constraints in real-world instances (e.g., with 50-1000 thousand blocks) make the CPIT’s mixed integer programming (MIP) model intractable for use. Thus, it becomes a considerable challenge to solve the large scale CPIT instances without relying on exact MIP optimiser as well as the complicated MIP relaxation/decomposition methods. To take this challenge, two new graph-based algorithms based on network flow graph and conjunctive graph theory are developed by taking advantage of problem properties. The performance of our proposed algorithms is validated by testing recent large scale benchmark UPIT and CPIT instances’ datasets of MineLib in 2013. In comparison to best known results from MineLib, it is shown that the proposed algorithms outperform other CPIT solution approaches existing in the literature. The proposed graph-based algorithms leads to a more competent mine scheduling optimisation expert system because the third-party MIP optimiser is no longer indispensable and random neighbourhood search is not necessary.