255 resultados para 280405 Discrete Mathematics
Resumo:
Highly sensitive infrared cameras can produce high-resolution diagnostic images of the temperature and vascular changes of breasts. Wavelet transform based features are suitable in extracting the texture difference information of these images due to their scale-space decomposition. The objective of this study is to investigate the potential of extracted features in differentiating between breast lesions by comparing the two corresponding pectoral regions of two breast thermograms. The pectoral regions of breastsare important because near 50% of all breast cancer is located in this region. In this study, the pectoral region of the left breast is selected. Then the corresponding pectoral region of the right breast is identified. Texture features based on the first and the second sets of statistics are extracted from wavelet decomposed images of the pectoral regions of two breast thermograms. Principal component analysis is used to reduce dimension and an Adaboost classifier to evaluate classification performance. A number of different wavelet features are compared and it is shown that complex non-separable 2D discrete wavelet transform features perform better than their real separable counterparts.
Resumo:
In biology, we frequently observe different species existing within the same environment. For example, there are many cell types in a tumour, or different animal species may occupy a given habitat. In modelling interactions between such species, we often make use of the mean field approximation, whereby spatial correlations between the locations of individuals are neglected. Whilst this approximation holds in certain situations, this is not always the case, and care must be taken to ensure the mean field approximation is only used in appropriate settings. In circumstances where the mean field approximation is unsuitable we need to include information on the spatial distributions of individuals, which is not a simple task. In this paper we provide a method that overcomes many of the failures of the mean field approximation for an on-lattice volume-excluding birth-death-movement process with multiple species. We explicitly take into account spatial information on the distribution of individuals by including partial differential equation descriptions of lattice site occupancy correlations. We demonstrate how to derive these equations for the multi-species case, and show results specific to a two-species problem. We compare averaged discrete results to both the mean field approximation and our improved method which incorporates spatial correlations. We note that the mean field approximation fails dramatically in some cases, predicting very different behaviour from that seen upon averaging multiple realisations of the discrete system. In contrast, our improved method provides excellent agreement with the averaged discrete behaviour in all cases, thus providing a more reliable modelling framework. Furthermore, our method is tractable as the resulting partial differential equations can be solved efficiently using standard numerical techniques.
Resumo:
The activities introduced here were used in association with a research project in four Year 4 classrooms and are suggested as a motivating way to address several criteria for Measurement and Data in the Australian Curriculum: Mathematics. The activities involve measuring the arm span of one student in a class many times and then of all students once.
Resumo:
This introductory section provides an overview of the different perspectives on reconceptualizing early mathematics learning. The chapters provide a broad scope in their topics and approaches to advancing young children’s mathematical learning. They incorporate studies that highlight the importance of pattern and structure across the curriculum, studies that target particular content such as statistics, early algebra, and beginning number, and studies that consider how technology and other tools can facilitate early mathematical development. Reconceptualizing the professional learning of teachers in promoting young children’s mathematics, including a consideration of the role of play, is also addressed. Although these themes are diffused throughout the chapters, we restrict our introduction to the core focus of each of the chapters.
Resumo:
The Pattern and Structure Mathematics Awareness Program (PASMAP) was developed concurrently with the studies of AMPS and the development of the Pattern and Structure Assessment (PASA) interview. We summarize some early classroom-based teaching studies and describe the PASMAP that resulted. A large-scale two-year longitudinal study, Reconceptualizing Early Mathematics Learning (REML) resulted. We provide an overview of the REML study and discuss the consequences for our view of early mathematics learning. A purposive sample of four large primary schools, two in Sydney and two in Brisbane, representing 316 students from diverse socio-economic and cultural contexts, participated in an evaluation of the PASMAP intervention throughout the 2009 school year and a follow-up assessment in 2010. Two different mathematics programs were implemented: in each school, two Kindergarten teachers implemented the PASMAP and another two implemented their regular program. The study shows that both groups of students made substantial gains on the ‘I Can Do Maths’ standardized assessment and the PASA interview, but highly significant differences were found on the latter with PASMAP students outperforming the regular group on PASA scores. Qualitative analysis of students’ responses for structural development showed increased levels for the PASMAP students. Implications for pedagogy and curriculum are discussed.
Resumo:
The Accelerating the Mathematics Learning of Low Socio-Economic Status Junior Secondary Students project aims to address the issues faced by very underperforming mathematics students as they enter high school. Its aim is to accelerate learning of mathematics through a vertical curriculum to enable students to access Year 10 mathematics subjects, thus improving life chances. This paper reports upon the theory underpinning this project and illustrates it with examples of the curriculum that has been designed to achieve acceleration.
Resumo:
A fractional differential equation is used to describe a fractal model of mobile/immobile transport with a power law memory function. This equation is the limiting equation that governs continuous time random walks with heavy tailed random waiting times. In this paper, we firstly propose a finite difference method to discretize the time variable and obtain a semi-discrete scheme. Then we discuss its stability and convergence. Secondly we consider a meshless method based on radial basis functions (RBFs) to discretize the space variable. In contrast to conventional FDM and FEM, the meshless method is demonstrated to have distinct advantages: calculations can be performed independent of a mesh, it is more accurate and it can be used to solve complex problems. Finally the convergence order is verified from a numerical example which is presented to describe a fractal model of mobile/immobile transport process with different problem domains. The numerical results indicate that the present meshless approach is very effective for modeling and simulating fractional differential equations, and it has good potential in the development of a robust simulation tool for problems in engineering and science that are governed by various types of fractional differential equations.
Resumo:
The Thailand education reform adopted cooperative learning to improve the quality of education. However, it has been reported that the introduction and maintenance of cooperative learning has been difficult and uncertain because of the cultural differences. The study proposed a conceptual framework developed based on making a connection between Thai cultures and cooperative learning elements, and implemented a small-scale research project in a Thai primary mathematics class with a teacher and thirty-two Grade 4 students. The results uncovered that the three components including preparation of teachers, instructional strategies and preparation of students can be vehicles for the culture integration in cooperative learning.
Resumo:
Cell-to-cell adhesion is an important aspect of malignant spreading that is often observed in images from the experimental cell biology literature. Since cell-to-cell adhesion plays an important role in controlling the movement of individual malignant cells, it is likely that cell-to-cell adhesion also influences the spatial spreading of populations of such cells. Therefore, it is important for us to develop biologically realistic simulation tools that can mimic the key features of such collective spreading processes to improve our understanding of how cell-to-cell adhesion influences the spreading of cell populations. Previous models of collective cell spreading with adhesion have used lattice-based random walk frameworks which may lead to unrealistic results, since the agents in the random walk simulations always move across an artificial underlying lattice structure. This is particularly problematic in high-density regions where it is clear that agents in the random walk align along the underlying lattice, whereas no such regular alignment is ever observed experimentally. To address these limitations, we present a lattice-free model of collective cell migration that explicitly incorporates crowding and adhesion. We derive a partial differential equation description of the discrete process and show that averaged simulation results compare very well with numerical solutions of the partial differential equation.
Resumo:
Diagnostics of rotating machinery has developed significantly in the last decades, and industrial applications are spreading in different sectors. Most applications are characterized by varying velocities of the shaft and in many cases transients are the most critical to monitor. In these variable speed conditions, fault symptoms are clearer in the angular/order domains than in the common time/frequency ones. In the past, this issue was often solved by synchronously sampling data by means of phase locked circuits governing the acquisition; however, thanks to the spread of cheap and powerful microprocessors, this procedure is nowadays rarer; sampling is usually performed at constant time intervals, and the conversion to the order domain is made by means of digital signal processing techniques. In the last decades different algorithms have been proposed for the extraction of an order spectrum from a signal sampled asynchronously with respect to the shaft rotational velocity; many of them (the so called computed order tracking family) use interpolation techniques to resample the signal at constant angular increments, followed by a common discrete Fourier transform to shift from the angular domain to the order domain. A less exploited family of techniques shifts directly from the time domain to the order spectrum, by means of modified Fourier transforms. This paper proposes a new transform, named velocity synchronous discrete Fourier transform, which takes advantage of the instantaneous velocity to improve the quality of its result, reaching performances that can challenge the computed order tracking.
Resumo:
The transmission path from the excitation to the measured vibration on the surface of a mechanical system introduces a distortion both in amplitude and in phase. Moreover, in variable speed conditions, the amplification/attenuation and the phase shift, due to the transfer function of the mechanical system, varies in time. This phenomenon reduces the effectiveness of the traditionally tachometer based order tracking, compromising the results of a discrete-random separation performed by a synchronous averaging. In this paper, for the first time, the extent of the distortion is identified both in the time domain and in the order spectrum of the signal, highlighting the consequences for the diagnostics of rotating machinery. A particular focus is given to gears, providing some indications on how to take advantage of the quantification of the disturbance to better tune the techniques developed for the compensation of the distortion. The full theoretical analysis is presented and the results are applied to an experimental case.
Resumo:
Spreading cell fronts play an essential role in many physiological processes. Classically, models of this process are based on the Fisher-Kolmogorov equation; however, such continuum representations are not always suitable as they do not explicitly represent behaviour at the level of individual cells. Additionally, many models examine only the large time asymptotic behaviour, where a travelling wave front with a constant speed has been established. Many experiments, such as a scratch assay, never display this asymptotic behaviour, and in these cases the transient behaviour must be taken into account. We examine the transient and asymptotic behaviour of moving cell fronts using techniques that go beyond the continuum approximation via a volume-excluding birth-migration process on a regular one-dimensional lattice. We approximate the averaged discrete results using three methods: (i) mean-field, (ii) pair-wise, and (iii) one-hole approximations. We discuss the performace of these methods, in comparison to the averaged discrete results, for a range of parameter space, examining both the transient and asymptotic behaviours. The one-hole approximation, based on techniques from statistical physics, is not capable of predicting transient behaviour but provides excellent agreement with the asymptotic behaviour of the averaged discrete results, provided that cells are proliferating fast enough relative to their rate of migration. The mean-field and pair-wise approximations give indistinguishable asymptotic results, which agree with the averaged discrete results when cells are migrating much more rapidly than they are proliferating. The pair-wise approximation performs better in the transient region than does the mean-field, despite having the same asymptotic behaviour. Our results show that each approximation only works in specific situations, thus we must be careful to use a suitable approximation for a given system, otherwise inaccurate predictions could be made.
Resumo:
Philosophical inquiry in the teaching and learning of mathematics has received continued, albeit limited, attention over many years (e.g., Daniel, 2000; English, 1994; Lafortune, Daniel, Fallascio, & Schleider, 2000; Kennedy, 2012a). The rich contributions these communities can offer school mathematics, however, have not received the deserved recognition, especially from the mathematics education community. This is a perplexing situation given the close relationship between the two disciplines and their shared values for empowering students to solve a range of challenging problems, often unanticipated, and often requiring broadened reasoning. In this article, I first present my understanding of philosophical inquiry as it pertains to the mathematics classroom, taking into consideration the significant work that has been undertaken on socio-political contexts in mathematics education (e.g., Skovsmose & Greer, 2012). I then consider one approach to advancing philosophical inquiry in the mathematics classroom, namely, through modelling activities that require interpretation, questioning, and multiple approaches to solution. The design of these problem activities, set within life-based contexts, provides an ideal vehicle for stimulating philosophical inquiry.