255 resultados para Van Der Pol Equation
Resumo:
Searching for relevant peer-reviewed material is an integral part of corporate and academic researchers. Researchers collect huge amount of information over the years and sometimes struggle organizing it. Based on a study with 30 academic researchers, we explore, in combination, different searching and archiving activities of document-based information. Based on our results we provide several implications for design.
Resumo:
A growing interest is seen for designing intelligent environments that support personally meaningful, sociable and rich everyday experiences. In this paper we describe an intelligent, large screen display called Panorama that is aimed at supporting and enhancing social awareness within an academic work environment. Panorama is not intended to provide instrumental or other productivity related information. Rather, the goal of Panorama is to enhance social awareness by providing interpersonal and rich information related to co-workers and their everyday interactions in the department. A two-phase assessment of Panorama showed to promote curiosity and interest in exploring different activities in the environment.
Resumo:
Awareness within work environments should not be seen limited to important work-related information, activities and relationships. Mediating somewhat casual and engaging encounters related to non-work issues could also lead to meaningful and pleasurable experiences. This paper explores a design approach to support playfully mediated social awareness within an academic environment. Using ethnographic exploration and understanding the current and aspired practices, we provide details of two broad (and some times overlapping) categories of interaction for supporting and enhancing playfully mediated social awareness amongst staff members: 1) Self-Reflections and 2) Casual Encounters. We implement these two categories of interaction in an intelligent, asynchronous, large screen display called Panorama, for the staff room of our computer science department. Panorama attempts to mediate non-critical, non-work related information about the staff-members in an engaging manner to enhance social awareness within the department. We particularly emphasize on the soft design issues like reflections, belonging, care, pleasure and playfulness utilized in our design approach. The result of a two-phase assessment study suggests that our conceptualization of social awareness and the Panorama application has the potential to be easily incorporated into our academic environment.
Resumo:
All design classes followed a systematic design approach, that, in an abstract way, can be characterized by figure 1. This approach is based on our design approach [1] that we labeled DUTCH (design for users and tasks, from concepts to handles).Consequently, each course starts with collecting, modeling, and analyzing an existing situation. The next step is the development of a vision on a future domain world where new technology and / or new representations have been implemented. This second step is the first tentative global design that will be represented in scenarios or prototypes and can be assessed. This second design model is based on both the client’s requirements and technological possibilities and challenges. In an iterative way multiple instantiations of detail design may follow, that each can be assessed and evaluated again...
Resumo:
Designing systems for multiple stakeholders requires frequent collaboration with multiple stakeholders from the start. In many cases at least some stakeholders lack a professional habit of formal modeling. We report observations from two case studies of stakeholder-involvement in early design where non-formal techniques supported strong collaboration resulting in deep understanding of requirements and of the feasibility of solutions.
Resumo:
Motivation ?Task analysis for designing modern collaborative work needs a more fine grained approach. Especially in a complex task domain, like collaborative scientific authoring, when there is a single overall goal that can only be accomplished only by collaboration between multiple roles, each requiring its own expertise. We analyzed and re-considered roles, activities, and objects for design for complex collaboration contexts. Our main focus is on a generic approach to design for multiple roles and subtasks in a domain with a shared overall goal, which requires a detailed approach. Collaborative authoring is our current example. This research is incremental: an existing task analysis approach (GTA) is reconsidered by applying it to a case of complex collaboration. Our analysis shows that designing for collaboration indeed requires a refined approach to task modeling: GTA, in future, will need to consider tasks at the lowest level that can be delegated or mandates. These tasks need to be analyzed and redesigned in more in detail, along with the relevant task object.
Resumo:
Many countries conduct regular national time use surveys, some of which date back as far as the 1960s. Time use surveys potentially provide more detailed and accurate national estimates of the prevalence of sedentary and physical activity behavior than more traditional self-report surveillance systems. In this study, the authors determined the reliability and validity of time use surveys for assessing sedentary and physical activity behavior. In 2006 and 2007, participants (n = 134) were recruited from work sites in the Australian state of New South Wales. Participants completed a 2-day time use diary twice, 7 days apart, and wore an accelerometer. The 2 diaries were compared for test-retest reliability, and comparison with the accelerometer determined concurrent validity. Participants with similar activity patterns during the 2 diary periods showed reliability intraclass correlations of 0.74 and 0.73 for nonoccupational sedentary behavior and moderate/vigorous physical activity, respectively. Comparison of the diary with the accelerometer showed Spearman correlations of 0.57-0.59 and 0.45-0.69 for nonoccupational sedentary behavior and moderate/vigorous physical activity, respectively. Time use surveys appear to be more valid for population surveillance of nonoccupational sedentary behavior and health-enhancing physical activity than more traditional surveillance systems. National time use surveys could be used to retrospectively study nonoccupational sedentary and physical activity behavior over the past 5 decades.
Resumo:
Thinking of cutting physical education? Think again. Even as we bemoan children's sedentary lifestyles, we often sacrifice school-based physical education in the name of providing more time for academics. In 2006, only 3.8 percent of elementary schools, 7.9 percent of middle schools, and 2.1 percent of high schools offered students daily physical education or its equivalent for the entire school year (Lee, Burgeson, Fulton, & Spain, 2007). We believe this marked reduction in school-based physical activity risks students' health and can't be justified on educational or ethical grounds. We'll get to the educational grounds in a moment. As to ethical reasons for keeping physical activity part of our young people's school days, consider the fact that childhood obesity is now one of the most serious health issues facing U.S. children (Ogden et al., 2006). School-based physical education programs engage students in regular physical activity and help them acquire skills and habits necessary to pursue an active lifestyle. Such programs are directly relevant to preventing obesity. Yet they are increasingly on the chopping block.
Resumo:
Carbon nanorods and graphene-like nanosheets are catalytically synthesized in a hot filament chemical vapor deposition system with and without plasma enhancement, with gold used as a catalyst. The morphological and structural properties of the carbon nanorods and nanosheets are investigated by field-emission scanning electron microscopy, transmission electron microscopy and micro-Raman spectroscopy. It is found that carbon nanorods are formed when a CH4 + H2 + N2 plasma is present while carbon nanosheets are formed in a methane environment without a plasma. The formation of carbon nanorods and carbon nanosheets are analyzed. The results suggest that the formation of carbon nanorods is primarily a precipitation process while the formation of carbon nanosheets is a complex process involving surface-catalysis, surface diffusion and precipitation influenced by the Gibbs–Thomson effect. The electron field emission properties of the carbon nanorods and graphene-like nanosheets are measured under high-vacuum; it is found that the carbon nanosheets have a lower field emission turn-on than the carbon nanorods. These results are important to improve the understanding of formation mechanisms of carbon nanomaterials and contribute to eventual applications of these structures in nanodevices.
Resumo:
Plasma-assisted magnetron sputtering with varying ambient conditions has been utilised to deposit Al-doped ZnO (AZO) transparent conductive thin films directly onto a glass substrate at a low substrate temperature of 400 °C. The effects of hydrogen addition on electrical, optical and structural properties of the deposited AZO films have been investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM), Hall effect measurements and UV–vis optical transmission spectroscopy. The results indicate that hydrogen addition has a remarkable effect on the film transparency and conductivity with the greatest effects observed with a hydrogen flux of approximately 3 sccm. It has been demonstrated that the conductivity and the average transmittance in the visible range can increase simultaneously contrary to the effects observed by other authors. In addition, hydrogen incorporation further leads to the absorption edge shifting to a shorter wavelength due to the Burstein–Moss effect. These results are of particular relevance to the development of the next generation of optoelectronic and photovoltaic devices based on highly transparent conducting oxides with controllable electronic and optical properties.
Resumo:
Using the advanced radio-frequency plasma-assisted magnetron deposition system, various nanostructures such as nanoflowers of carbon nanotubes, ZnO nanobelts, and silicon nanotrees were successfully synthesized. In this paper, we present the photographs of ICP and magnetron discharges, the photograph of a complex plasma structure, and the SEM images of various nanostructures synthesized in the system with magnetron and ICP sources operating simultaneously.
Resumo:
Organisations are constantly seeking new ways to improve operational efficiencies. This research study investigates a novel way to identify potential efficiency gains in business operations by observing how they are carried out in the past and then exploring better ways of executing them by taking into account trade-offs between time, cost and resource utilisation. This paper demonstrates how they can be incorporated in the assessment of alternative process execution scenarios by making use of a cost environment. A genetic algorithm-based approach is proposed to explore and assess alternative process execution scenarios, where the objective function is represented by a comprehensive cost structure that captures different process dimensions. Experiments conducted with different variants of the genetic algorithm evaluate the approach's feasibility. The findings demonstrate that a genetic algorithm-based approach is able to make use of cost reduction as a way to identify improved execution scenarios in terms of reduced case durations and increased resource utilisation. The ultimate aim is to utilise cost-related insights gained from such improved scenarios to put forward recommendations for reducing process-related cost within organisations.
Resumo:
Graphene has received great interest from researchers all over the world owing to its unique properties. Much of the excitement surrounding graphene is due to its remarkable properties and inherent quantum effects. These effects and properties make it a desirable material for the fabrication of new devices. Graphene has a plethora of potential uses including gas and molecular sensors, electronics, spintronics and optics [1-7]. Interestingly, some of these properties have been known about since before the material was even isolated due to a considerable amount of theoretical work and simulations. The material was to some extent a condensed matter modelers "toy" as it was used as a benchmark 2D material Graphene had been used for a long time as the fundamental building block of many other carbon structures...
Resumo:
Two conjugated oligomers, representing elementary segments of fluorene-thiophene copolymers, are compared in terms of the microscopic morphology and the optical properties of thin deposits. The atomic force microscopy morphological data and the solid-state absorption and emission spectra are interpreted in terms of the assembly of the conjugated molecules. The compound with a terthiophene central unit and fluorene end-groups shows well-defined monolayer-by-monolayer assembly into micrometer-long stripe-like structures, with a crystalline herringbone-type organization within the monolayers. Polarized confocal microscopy indicates a strong orientation of the crystalline domains within the stripes. In contrast, the compound with a terfluorene central unit and thiophene end groups forms no textured aggregates and the optical spectra in the solid-state are very similar to those recorded in solution, suggesting that the molecules interact only weakly in the solid. The difference in behaviour between the two compounds most probably originates from their different capability to form densely-packed assemblies of interacting π-systems.
Resumo:
Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2’–deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.