375 resultados para Linear Matrix Inequalities
Resumo:
The work presented in this poster outlines the steps taken to model a 4 mm conical collimator (BrainLab, Germany) on a Novalis Tx linear accelerator (Varian, Palo Alto, USA) capable of producing a 6MV photon beam for treatment of Stereotactic Radiosurgery (SRS) patients. The verification of this model was performed by measurements in liquid water and in virtual water. The measurements involved scanning depth dose and profiles in a water tank plus measurement of output factors in virtual water using Gafchromic® EBT3 film.
Resumo:
Background Socioeconomically-disadvantaged adults in developed countries experience a higher prevalence of a number of chronic diseases, such as cardiovascular disease, type 2 diabetes, osteoarthritis and some forms of cancer. Overweight and obesity are major risk factors for these diseases. Lower socioeconomic groups have a greater prevalence of overweight and obesity and this may contribute to their higher morbidity and mortality. International studies suggest that socioeconomic groups may differ in their self-perceptions of weight status and their engagement in weightcontrol behaviours (WCBs). Research has shown that lower socioeconomic adults are more likely to underestimate their weight status, and are less likely to engage in WCBs. This may contribute (in part) to the marked inequalities in weight status observed at the population level. There are few, and somewhat limited, Australian studies that have examined the types of weight-control strategies people adopt, the barriers to their weight control, the determinants of their perceived weight status and WCBs. Furthermore, there are no known Australian studies that have examined socioeconomic differences in these factors to better understand the reasons for socioeconomic inequalities in weight status. Hence, the overall aim of this Thesis is to examine why socioeconomically-disadvantaged group experience a greater prevalence of overweight and obesity than their more-advantaged counterparts. Methods This Thesis used data from two sources. Men and women aged 45 to 60 years were examined from both data source. First, the longitudinal Australian Diabetes, Obesity and Lifestyle (AusDiab) Study were used to advance our knowledge and understanding of socioeconomic differences in weight change, perceived weight status and WCBs. A total of 2753 participants with measured weights at both baseline (1999-2000) and follow-up (2004-2005) were included in the analyses. Percent weight change over the five-year interval was calculated and perceived weight status, WCBs and highest attained education were collected at baseline. Second, the Candidate conducted a postal questionnaire from 1013 Brisbane residents (69.8 % response rate) to investigate the relationship between socioeconomic position, determinants of perceived weight status, WCBs, and barriers and reasons to weight control. A test-retest reliability study was conducted to determine the reliability of the new measures used in the questionnaire. Most new measures had substantial to almost perfect reliability when considering either kappa coefficient or crude agreement. Results The findings from the AusDiab Study (accepted for publication in the Australian and New Zealand Journal of Public Health) showed that low-educated men and women were more likely to be obese at baseline compared to their higheducated respondents (O.R. = 1.97, 95 % C.I. = 1.30-2.98 and O.R. = 1.52, 95 % C.I. = 1.03-2.25, respectively). Over the five year follow-up period (1999-2000 to 2004- 05) there were no socioeconomic differences in weight change among men, however socioeconomically-disadvantaged women had greater weight gains. Participants perceiving themselves as overweight gained less weight than those who saw themselves as underweight or normal weight. There was no relationship between engaging in WCBs and five-year weight change. The postal questionnaire data showed that socioeconomically-disadvantaged groups were less likely to engage in WCBs. If they did engage in weight control, they were less likely to adopt exercise strategies, including moderate and vigorous physical activities but were more likely to decrease their sitting time to control their weight. Socioeconomically-disadvantaged adults reported more barriers to weight control; such as perceiving weight loss as expensive, requiring a lot of cooking skills, not being a high priority and eating differently from other people in the household. These results have been accepted for publication in Public Health Nutrition. The third manuscript (under review in Social Science and Medicine) examined socioeconomic differences in determinants of perceived weight status and reasons for weight control. The results showed that lower socioeconomic adults were more likely to specify the following reasons for weight control: they considered themselves to be too heavy, for occupational requirements, on recommendation from their doctor, family members or friends. Conversely, high-income adults were more likely to report weight control to improve their physical condition or to look more attractive compared with those on lower-incomes. There were few socioeconomic differences in the determinants of perceived weight status. Conclusions Education inequalities in overweight/obesity among men and women may be due to mis-perceptions of weight status; overweight or obese individuals in loweducated groups may not perceive their weight as problematic and therefore may not pay attention to their energy-balance behaviours. Socioeconomic groups differ in WCBs, and their reasons and perceived barriers to weight control. Health promotion programs should encourage weight control among lower socioeconomic groups. More specifically, they should encourage the engagement of physical activity or exercise and dietary strategies among disadvantaged groups. Furthermore, such programs should address potential barriers for weight control that disadvantaged groups may encounter. For example, disadvantaged groups perceive that weight control is expensive, requires cooking skills, not a high priority and eating differently from other people in the household. Lastly, health promotion programs and policies aimed at reducing overweight and obesity should be tailored to the different reasons and motivations to weight control experienced by different socioeconomic groups. Weight-control interventions targeted at higher socioeconomic groups should use improving physical condition and attractiveness as motivational goals; while, utilising social support may be more effective for encouraging weight control among lower socioeconomic groups.
Resumo:
Motorcyclists are the most crash-prone road-user group in many Asian countries including Singapore; however, factors influencing motorcycle crashes are still not well understood. This study examines the effects of various roadway characteristics, traffic control measures and environmental factors on motorcycle crashes at different location types including expressways and intersections. Using techniques of categorical data analysis, this study has developed a set of log-linear models to investigate multi-vehicle motorcycle crashes in Singapore. Motorcycle crash risks in different circumstances have been calculated after controlling for the exposure estimated by the induced exposure technique. Results show that night-time influence increases crash risks of motorcycles particularly during merging and diverging manoeuvres on expressways, and turning manoeuvres at intersections. Riders appear to exercise more care while riding on wet road surfaces particularly during night. Many hazardous interactions at intersections tend to be related to the failure of drivers to notice a motorcycle as well as to judge correctly the speed/distance of an oncoming motorcycle. Road side conflicts due to stopping/waiting vehicles and interactions with opposing traffic on undivided roads have been found to be as detrimental factors on motorcycle safety along arterial, main and local roads away from intersections. Based on the findings of this study, several targeted countermeasures in the form of legislations, rider training, and safety awareness programmes have been recommended.
Resumo:
A multiple reaction monitoring mass spectrometric assay for the quantification of PYY in human plasma has been developed. A two stage sample preparation protocol was employed in which plasma containing the full length neuropeptide was first digested using trypsin, followed by solid-phase extraction to extract the digested peptide from the complex plasma matrix. The peptide extracts were analysed by LC-MS using multiple reaction monitoring to detect and quantify PYY. The method has been validated for plasma samples, yielding linear responses over the range 5–1,000 ng mL−1. The method is rapid, robust and specific for plasma PYY detection.
Resumo:
Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.
Resumo:
We present a formalism for the analysis of sensitivity of nuclear magnetic resonance pulse sequences to variations of pulse sequence parameters, such as radiofrequency pulses, gradient pulses or evolution delays. The formalism enables the calculation of compact, analytic expressions for the derivatives of the density matrix and the observed signal with respect to the parameters varied. The analysis is based on two constructs computed in the course of modified density-matrix simulations: the error interrogation operators and error commutators. The approach presented is consequently named the Error Commutator Formalism (ECF). It is used to evaluate the sensitivity of the density matrix to parameter variation based on the simulations carried out for the ideal parameters, obviating the need for finite-difference calculations of signal errors. The ECF analysis therefore carries a computational cost comparable to a single density-matrix or product-operator simulation. Its application is illustrated using a number of examples from basic NMR spectroscopy. We show that the strength of the ECF is its ability to provide analytic insights into the propagation of errors through pulse sequences and the behaviour of signal errors under phase cycling. Furthermore, the approach is algorithmic and easily amenable to implementation in the form of a programming code. It is envisaged that it could be incorporated into standard NMR product-operator simulation packages.
Resumo:
Background In Australia, breast cancer is the most common cancer affecting Australian women. Inequalities in clinical and psychosocial outcomes have existed for some time, affecting particularly women from rural areas and from areas of disadvantage. We have a limited understanding of how individual and area-level factors are related to each other, and their associations with survival and other clinical and psychosocial outcomes. Methods/Design This study will examine associations between breast cancer recurrence, survival and psychosocial outcomes (e.g. distress, unmet supportive care needs, quality of life). The study will use an innovative multilevel approach using area-level factors simultaneously with detailed individual-level factors to assess the relative importance of remoteness, socioeconomic and demographic factors, diagnostic and treatment pathways and processes, and supportive care utilization to clinical and psychosocial outcomes. The study will use telephone and self-administered questionnaires to collect individual-level data from approximately 3, 300 women ascertained from the Queensland Cancer Registry diagnosed with invasive breast cancer residing in 478 Statistical Local Areas Queensland in 2011 and 2012. Area-level data will be sourced from the Australian Bureau of Statistics census data. Geo-coding and spatial technology will be used to calculate road travel distances from patients' residence to diagnostic and treatment centres. Data analysis will include a combination of standard empirical procedures and multilevel modelling. Discussion The study will address the critical question of: what are the individual- or area-level factors associated with inequalities in outcomes from breast cancer? The findings will provide health care providers and policy makers with targeted information to improve the management of women with breast cancer, and inform the development of strategies to improve psychosocial care for women with breast cancer.
Resumo:
This paper considers VECMs for variables exhibiting cointegration and common features in the transitory components. While the presence of cointegration between the permanent components of series reduces the rank of the long-run multiplier matrix, a common feature among the transitory components leads to a rank reduction in the matrix summarizing short-run dynamics. The common feature also implies that there exists linear combinations of the first-differenced variables in a cointegrated VAR that are white noise and traditional tests focus on testing for this characteristic. An alternative, however, is to test the rank of the short-run dynamics matrix directly. Consequently, we use the literature on testing the rank of a matrix to produce some alternative test statistics. We also show that these are identical to one of the traditional tests. The performance of the different methods is illustrated in a Monte Carlo analysis which is then used to re-examine an existing empirical study. Finally, this approach is applied to provide a check for the presence of common dynamics in DSGE models.
Resumo:
The pathological outcomes of schistosomiasis are largely dependent on the molecular and cellular mechanisms of the host immune response. In this study, we investigated the contribution of variations in host gene expression to the contrasting hepatic pathology observed between two inbred mouse strains following Schistosoma japonicum infection. Whole genome microarray analysis was employed in conjunction with histological and immunohistochemical analysis to define and compare the hepatic gene expression profiles and cellular composition associated with the hepatopathology observed in S. japonicum-infected BALB/c and CBA mice. We show that the transcriptional profiles differ significantly between the two mouse strains with high statistical confidence. We identified specific genes correlating with the more severe pathology associated with CBA mice, as well as genes which may confer the milder degree of pathology associated with BALB/c mice. In BALB/c mice, neutrophil genes exhibited striking increases in expression, which coincided with the significantly greater accumulation of neutrophils at granulomatous regions seen in histological sections of hepatic tissue. In contrast, up-regulated expression of the eosinophil chemokine CCL24 in CBA mice paralleled the cellular influx of eosinophils to the hepatic granulomas. Additionally, there was greater down-regulation of genes involved in metabolic processes in CBA mice, reflecting the more pronounced hepatic damage in these mice. Profibrotic genes showed similar levels of expression in both mouse strains, as did genes associated with Th1 and Th2 responses. However, imbalances in expression of matrix metalloproteinases (e.g. MMP12, MMP13) and tissue inhibitors of metalloproteinases (TIMP1) may contribute to the contrasting pathology observed in the two strains. Overall, these results provide a more complete picture of the molecular and cellular mechanisms which govern the pathological outcome of hepatic schistosomiasis. This improved understanding of the immunopathogenesis in the murine model schistosomiasis provides the basis for a better appreciation of the complexities associated with chronic human schistosomiasis.
Resumo:
A major challenge in modern photonics and nano-optics is the diffraction limit of light which does not allow field localisation into regions with dimensions smaller than half the wavelength. Localisation of light into nanoscale regions (beyond its diffraction limit) has applications ranging from the design of optical sensors and measurement techniques with resolutions as high as a few nanometres, to the effective delivery of optical energy into targeted nanoscale regions such as quantum dots, nano-electronic and nano-optical devices. This field has become a major research direction over the last decade. The use of strongly localised surface plasmons in metallic nanostructures is one of the most promising approaches to overcome this problem. Therefore, the aim of this thesis is to investigate the linear and non-linear propagation of surface plasmons in metallic nanostructures. This thesis will focus on two main areas of plasmonic research –– plasmon nanofocusing and plasmon nanoguiding. Plasmon nanofocusing – The main aim of plasmon nanofocusing research is to focus plasmon energy into nanoscale regions using metallic nanostructures and at the same time achieve strong local field enhancement. Various structures for nanofocusing purposes have been proposed and analysed such as sharp metal wedges, tapered metal films on dielectric substrates, tapered metal rods, and dielectric V-grooves in metals. However, a number of important practical issues related to nanofocusing in these structures still remain unclear. Therefore, one of the main aims of this thesis is to address two of the most important of issues which are the coupling efficiency and heating effects of surface plasmons in metallic nanostructures. The method of analysis developed throughout this thesis is a general treatment that can be applied to a diversity of nanofocusing structures, with results shown here for the specific case of sharp metal wedges. Based on the geometrical optics approximation, it is demonstrated that the coupling efficiency from plasmons generated with a metal grating into the nanofocused symmetric or quasi-symmetric modes may vary between ~50% to ~100% depending on the structural parameters. Optimal conditions for nanofocusing with the view to minimise coupling and dissipative losses are also determined and discussed. It is shown that the temperature near the tip of a metal wedge heated by nanosecond plasmonic pulses can increase by several hundred degrees Celsius. This temperature increase is expected to lead to nonlinear effects, self-influence of the focused plasmon, and ultimately self-destruction of the metal tip. This thesis also investigates a different type of nanofocusing structure which consists of a tapered high-index dielectric layer resting on a metal surface. It is shown that the nanofocusing mechanism that occurs in this structure is somewhat different from other structures that have been considered thus far. For example, the surface plasmon experiences significant backreflection and mode transformation at a cut-off thickness. In addition, the reflected plasmon shows negative refraction properties that have not been observed in other nanofocusing structures considered to date. Plasmon nanoguiding – Guiding surface plasmons using metallic nanostructures is important for the development of highly integrated optical components and circuits which are expected to have a superior performance compared to their electronicbased counterparts. A number of different plasmonic waveguides have been considered over the last decade including the recently considered gap and trench plasmon waveguides. The gap and trench plasmon waveguides have proven to be difficult to fabricate. Therefore, this thesis will propose and analyse four different modified gap and trench plasmon waveguides that are expected to be easier to fabricate, and at the same time acquire improved propagation characteristics of the guided mode. In particular, it is demonstrated that the guided modes are significantly screened by the extended metal at the bottom of the structure. This is important for the design of highly integrated optics as it provides the opportunity to place two waveguides close together without significant cross-talk. This thesis also investigates the use of plasmonic nanowires to construct a Fabry-Pérot resonator/interferometer. It is shown that the resonance effect can be achieved with the appropriate resonator length and gap width. Typical quality factors of the Fabry- Pérot cavity are determined and explained in terms of radiative and dissipative losses. The possibility of using a nanowire resonator for the design of plasmonic filters with close to ~100% transmission is also demonstrated. It is expected that the results obtained in this thesis will play a vital role in the development of high resolution near field microscopy and spectroscopy, new measurement techniques and devices for single molecule detection, highly integrated optical devices, and nanobiotechnology devices for diagnostics of living cells.