218 resultados para beam parameter products
Resumo:
Cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. The rich sources of prior information in IGRT are incorporated into a hidden Markov random field model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk. The voxel labels are estimated using iterated conditional modes. The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom. The mean voxel-wise misclassification rate was 6.2\%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.
Resumo:
This thesis investigates the use of near infrared (NIR) spectroscopic methods for rapid measurement of nutrient elements in mill mud and mill ash. Adoption of NIR-based analyses for carbon, nitrogen, phosphorus, potassium and silicon will allow Australian sugarcane farmers to comply with recent legislative changes, and act within recommended precision farming frameworks. For these analyses, NIR spectroscopic methods surpass several facets of traditional wet chemistry techniques, dramatically reducing costs, required expertise and chemical exposure, while increasing throughput and access to data. Further, this technology can be applied in various modes, including laboratory, at-line and on-line installations, allowing targeted measurement.
Resumo:
In this paper, we propose a novel online hidden Markov model (HMM) parameter estimator based on Kerridge inaccuracy rate (KIR) concepts. Under mild identifiability conditions, we prove that our online KIR-based estimator is strongly consistent. In simulation studies, we illustrate the convergence behaviour of our proposed online KIR-based estimator and provide a counter-example illustrating the local convergence properties of the well known recursive maximum likelihood estimator (arguably the best existing solution).
Resumo:
Aim/Background
TRALI is hypothesised to develop via a two-event mechanism involving both the patieint's underlying morbidity and blood product factors. The storage of cellular products has been implicated in cases of non-antibody mediated TRALI, however the pathophysiological mechanisms are undefined. We investigated blood product storage-related modulation of inflmmatory cells and medicators involved in TRALI.
Methods
In an in vitro mode, fresh human whole blood was mixed with culture media (control) or LPS as a 1st event and "transfused" with 10% (v/v) pooled supernatant (SN) from Day 1 (d1, n=75) or Day 42 (D42, n=113) packed red blood cells (PRBCs) as a 2nd event. Following 6hrs, culture SN was used to assess the overall inflammatory response (cytometric bead array) and a duplicate assay containing protein transport inhibitor was used to assess neutrophil- and monocyte-specific inflmamatory responses using multi-colour flow cytometry. Panels: IL-6, IL-8, IL-10, IL-12, IL-1, TNF, MCP-1, IP-10, MIP-1. One-way ANOVA 95% CI.
Results
In the absence of LPS, exposure to D1 or D42 PRBC-SN reduced monocyte expression of IL-6, IL-8 and Il-10. D42 PRBC-SN also reduced monocyte IP-10, and the overall IL-8 production was increased. In the presence of LPS, D1-PRBC SN only modified overall IP-10 levels which were reduced. However, cf LPS alone, the combination of LPS and D42 PRBC-SN resulted in increased neutrophil and monocyte productionof IL-1 and IL-8 as well as reduced monocyte TNF production. Additionally, LPS and D42 PRBC-SN resulted in overall inflmmatory changes: elevated IL-8,
Resumo:
This recent decision of the New South Wales Court of Appeal considers the scope of the parens patriae jurisdiction in cases where the jurisdiction is invoked for the protection of a Gillick competent minor. As outlined below, in certain circumstances the law recognises that mature minors are able to make their own decisions concerning medical treatment. However, there have been a number of Commonwealth decisions which have addressed the issue of whether mature minors are able to refuse medical procedures in circumstances where refusal will result in the minor dying. Ultimately, this case confirms that the minor does not necessarily have a right to make autonomous decisions; the minor’s right to exercise his or her autonomous decision only exists when such decision accords with what is deemed to be in his or her best interests.
Resumo:
In order to increase the accuracy of patient positioning for complex radiotherapy treatments various 3D imaging techniques have been developed. MegaVoltage Cone Beam CT (MVCBCT) can utilise existing hardware to implement a 3D imaging modality to aid patient positioning. MVCBCT has been investigated using an unmodified Elekta Precise linac and 15 iView amorphous silicon electronic portal imaging device (EPID). Two methods of delivery and acquisition have been investigated for imaging an anthropomorphic head phantom and quality assurance phantom. Phantom projections were successfully acquired and CT datasets reconstructed using both acquisition methods. Bone, tissue and air were 20 clearly resolvable in both phantoms even with low dose (22 MU) scans. The feasibility of MegaVoltage Cone beam CT was investigated using a standard linac, amorphous silicon EPID and a combination of a free open source reconstruction toolkit as well as custom in-house software written in Matlab. The resultant image quality has 25 been assessed and presented. Although bone, tissue and air were resolvable 2 in all scans, artifacts are present and scan doses are increased when compared with standard portal imaging. The feasibility of MVCBCT with unmodified Elekta Precise linac and EPID has been considered as well as the identification of possible areas for future development in artifact correction techniques to 30 further improve image quality.
Resumo:
A pilot experiment was performed using the WOMBAT powder diffraction instrument at ANSTO in which the first neutron diffraction peak (Q0) was measured for D2O flowing in a 2 mm internal diameter aluminium tube. Measurements of Q0 were made at -9, 4.3, 6.9, 12, 18.2 and 21.5 °C. The D2O was circulated using a siphon with water in the lower reservoir returned to the upper reservoir using a small pump. This enabled stable flow to be maintained for several hours. For example, if the pump flow increased slightly, the upper reservoir level rose, increasing the siphon flow until it matched the return flow. A neutron wavelength of 2.4 Å was used and data integrated over 60 minutes for each temperature. A jet of nitrogen from a liquid N2 Dewar was directed over the aluminium tube to vary water temperature. After collection of the data, the d spacing of the aluminium peaks was used to calculate the temperature of the aluminium within the neutron beam and therefore was considered to be an accurate measure of water temperature within the beam. Sigmaplot version 12.3 was used to fit a Weibull five parameter peak fit to the first neutron diffraction peak. The values of Q0 obtained in this experiment showed an increase with temperature consistent with data in the literature [1] but were consistently higher than published values for bulk D20. For example at 21.5 °C we obtained a value of 2.008 Å-1 for Q0 compared to a literature value of 1.988 Å-1 for bulk D2O at 20 °C, a difference of 1%. Further experiments are required to see if this difference is real or artifactual.
Resumo:
Much of what we currently understand about the structure and energetics of multiply charged anions in the gas phase is derived from the measurement of photoelectron spectra of simple dicarboxylate dianions. Here we have employed a modified linear ion-trap mass spectrometer to undertake complementary investigations of the ionic products resulting from laser-initiated electron photodetachment of two model dianions. Electron photodetachment (ePD) of the \[M-2H](2-) dianions formed from glutaric and adipic acid were found to result in a significant loss of ion signal overall, which is consistent with photoelectron studies that report the emission of slow secondary electrons (Xing et al., 2010 \[201). The ePD mass spectra reveal no signals corresponding to the intact \[M-2H](center dot-) radical anions, but rather \[M-2H-CO2](center dot-) ions are identified as the only abundant ionic products indicating that spontaneous decarboxylation follows ejection of the first electron. Interestingly however, investigations of the structure and energetics of the \[M-2H-CO2](center dot-) photoproducts by ion-molecule reaction and electronic structure calculation indicate that (i) these ions are stable with respect to secondary electron detachment and (ii) most of the ion population retains a distonic radical anion structure where the radical remains localised at the position of the departed carboxylate moiety. These observations lead to the conclusion that the mechanism for loss of ion signal involves unimolecular rearrangement reactions of the nascent \[M-2H](center dot-) carbonyloxyl radical anions that compete favourably with direct decarboxylation. Several possible rearrangement pathways that facilitate electron detachment from the radical anion are identified and are computed to be energetically accessible. Such pathways provide an explanation for prior observations of slow secondary electron features in the photoelectron spectra of the same dicaboxylate dianions. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Gas phase peroxyl radicals are central to our chemical understanding of combustion and atmospheric processes and are typically characterized by strong absorption in the UV (lambda(max) approximate to 240 nm). The analogous maximum absorption feature for arylperoxyl radicals is predicted to shift to the visible but has not previously been characterized nor have any photoproducts arising from this transition been identified. Here we describe the controlled synthesis and isolation in vacuo of an array of charge-substituted phenylperoxyl radicals at room temperature, including the 4-(N,N,N-trimethylammonium)methyl phenylperoxyl radical cation (4-Me3N[+]CH2-C6H4OO center dot), using linear ion-trap mass spectrometry. Photodissociation mass spectra obtained at wavelengths ranging from 310 to 500 nm reveal two major photoproduct channels corresponding to homolysis of aryl-OO and arylO-O bonds resulting in loss of O-2 and O, respectively. Combining the photodissociation yields across this spectral window produces a broad (FWHM approximate to 60 nm) but clearly resolved feature centered at lambda(max) = 403 nm (3.08 eV). The influence of the charge-tag identity and its proximity to the radical site are investigated and demonstrate no effect on the identity of the two dominant photoproduct channels. Electronic structure calculations have located the vertical (B) over tilde <- (X) over tilde transition of these substituted phenylperoxyl radicals within the experimental uncertainty and further predict the analogous transition for unsubstituted phenylperoxyl radical (C6H5OO center dot) to be 457 nm (2.71 eV), nearly 45 nm shorter than previous estimates and in good agreement with recent computational values.
Resumo:
This study investigates the variation of photon field penumbra shape with initial electron beam diameter, for very narrow beams. A Varian Millenium MLC (Varian Medical Systems, Palo Alto, USA) and a Brainlab m3 microMLC (Brainlab AB. Feldkirchen, Germany) were used, with one Varian iX linear accelerator, to produce fields that were (nominally) 0.20 cm across. Dose profiles for these fields were measured using radiochromic film and compared with the results of simulations completed using BEAMnrc and DOSXYZnrc, where the initial electron beam was set to FWHM = 0.02, 0.10, 0.12, 0.15, 0.20 and 0.50 cm. Increasing the electron-beam FWHM produced increasing occlusion of the photon source by the closely spaced collimator leaves and resulted in blurring of the simulated profile widths from 0.26 to 0.64 cm, for the MLC, from 0.12 to 0.43 cm, for the microMLC. Comparison with measurement data suggested that the electron spot size in the clinical linear accelerator was between FWHM = 0.10 and 0.15 cm, encompassing the result of our previous output-factor based work, which identified a FWHM of 0.12. Investigation of narrow-beam penumbra variation has been found to be a useful procedure, with results varying noticeably with linear accelerator spot size and allowing FWHM estimates obtained using other methods to be verified.
Resumo:
Many fungi, lichens, and bacteria produce xanthones (derivatives of 9H-xanthen-9-one, “xanthone” from the Greek “xanthos”, for “yellow”) as secondary metabolites. Xanthones are typically polysubstituted and occur as either fully aromatized, dihydro-, tetrahydro-, or, more rarely, hexahydro-derivatives. This family of compounds appeals to medicinal chemists because of their pronounced biological activity within a notably broad spectrum of disease states, a result of their interaction with a correspondingly diverse range of target biomolecules. This has led to the description of xanthones as “privileged structures”.(1) Historically, the total synthesis of the natural products has mostly been limited to fully aromatized targets. Syntheses of the more challenging partially saturated xanthones have less frequently been reported, although the development in recent times of novel and reliable methods for the construction of the (polysubstituted) unsaturated xanthone core holds promise for future endeavors. In particular, the fascinating structural and biological properties of xanthone dimers and heterodimers may excite the synthetic or natural product chemist.
Resumo:
Double or nothing! Recently the total ynthesis of secalonic acids A and D was reported. This work and other natural product syntheses with a dimerization step as a common feature are featured in this highlight. The significant biological activity of the secalonic acids and the fact that their synthesis has fascinated synthetic chemists for the past forty years make this work a milestone in natural product synthesis.
Resumo:
The phenylperoxyl radical has long been accepted as a critical intermediate in the oxidation of benzene and an archetype for arylperoxyl radicals in combustion and atmospheric chemistry. Despite being central to many contemporary mechanisms underpinning these chemistries, reports of the direct detection or isolation of phenylperoxyl radicals are rare and there is little experimental evidence connecting this intermediate with expected product channels. We have prepared and isolated two charge-tagged phenyl radical models in the gas phase [i.e., 4-(N,N,N-trimethylammonium) phenyl radical cation and 4-carboxylatophenyl radical anion] and observed their reactions with dioxygen by ion-trap mass spectrometry. Measured reaction rates show good agreement with prior reports for the neutral system (k(2)[(Me3N+)C6H4 center dot + O-2] = 2.8 x 10(-11) cm(3) molecule(-1) s(-1), Phi = 4.9%; k(2)[(-O2C)C6H4 center dot + O-2] = 5.4 x 10(-1)1 cm(3) molecule(-1) s(-1), Phi = 9.2%) and the resulting mass spectra provide unequivocal evidence for the formation of phenylperoxyl radicals. Collisional activation of isolated phenylperoxyl radicals reveals unimolecular decomposition by three pathways: (i) loss of dioxygen to reform the initial phenyl radical; (ii) loss of atomic oxygen yielding a phenoxyl radical; and (iii) ejection of the formyl radical to give cyclopentadienone. Stable isotope labeling confirms these assignments. Quantum chemical calculations for both charge-tagged and neutral phenylperoxyl radicals confirm that loss of formyl radical is accessible both thermodynamically and entropically and competitive with direct loss of both hydrogen atom and carbon dioxide.
Resumo:
RATIONALE: Polymer-based surface coatings in outdoor applications experience accelerated degradation due to exposure to solar radiation, oxygen and atmospheric pollutants. These deleterious agents cause undesirable changes to the aesthetic and mechanical properties of the polymer, reducing its lifetime. The use of antioxidants such as hindered amine light stabilisers (HALS) retards these degradative processes; however, mechanisms for HALS action and polymer degradation are poorly understood. METHODS: Detection of the HALS TINUVINW123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) and the polymer degradation products directly from a polyester-based coil coating was achieved by liquid extraction surface analysis (LESA) coupled to a triple quadrupole QTRAPW 5500 mass spectrometer. The detection of TINUVINW123 and melamine was confirmed by the characteristic fragmentation pattern observed in LESA-MS/MS spectra that was identical to that reported for authentic samples. RESULTS: Analysis of an unstabilised coil coating by LESA-MS after exposure to 4 years of outdoor field testing revealed the presence of melamine (1,3,5-triazine-2,4,6-triamine) as a polymer degradation product at elevated levels. Changes to the physical appearance of the coil coating, including powder-like deposits on the coating's surface, were observed to coincide with melamine deposits and are indicative of the phenomenon known as polymer ' blooming'. CONCLUSIONS: For the first time, in situ detection of analytes from a thermoset polymer coating was accomplished without any sample preparation, providing advantages over traditional extraction-analysis approaches and some contemporary ambient MS methods. Detection of HALS and polymer degradation products such as melamine provides insight into the mechanisms by which degradation occurs and suggests LESA-MS is a powerful new tool for polymer analysis. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
Introduction This study investigated the sensitivity of calculated stereotactic radiotherapy and radiosurgery doses to the accuracy of the beam data used by the treatment planning system. Methods Two sets of field output factors were acquired using fields smaller than approximately 1 cm2, for inclusion in beam data used by the iPlan treatment planning system (Brainlab, Feldkirchen, Germany). One set of output factors were measured using an Exradin A16 ion chamber (Standard Imaging, Middleton, USA). Although this chamber has a relatively small collecting volume (0.007 cm3), measurements made in small fields using this chamber are subject to the effects of volume averaging, electronic disequilibrium and chamber perturbations. The second, more accurate, set of measurements were obtained by applying perturbation correction factors, calculated using Monte Carlo simulations according to a method recommended by Cranmer-Sargison et al. [1] to measurements made using a 60017 unshielded electron diode (PTW, Freiburg, Germany). A series of 12 sample patient treatments were used to investigate the effects of beam data accuracy on resulting planned dose. These treatments, which involved 135 fields, were planned for delivery via static conformal arcs and 3DCRT techniques, to targets ranging from prostates (up to 8 cm across) to meningiomas (usually more than 2 cm across) to arterioveinous malformations, acoustic neuromas and brain metastases (often less than 2 cm across). Isocentre doses were calculated for all of these fields using iPlan, and the results of using the two different sets of beam data were evaluated. Results While the isocentre doses for many fields are identical (difference = 0.0 %), there is a general trend for the doses calculated using the data obtained from corrected diode measurements to exceed the doses calculated using the less-accurate Exradin ion chamber measurements (difference\0.0 %). There are several alarming outliers (circled in the Fig. 1) where doses differ by more than 3 %, in beams from sample treatments planned for volumes up to 2 cm across. Discussion and conclusions These results demonstrate that treatment planning dose calculations for SRT/SRS treatments can be substantially affected when beam data for fields smaller than approximately 1 cm2 are measured inaccurately, even when treatment volumes are up to 2 cm across.