Consistent HMM parameter estimation using Kerridge inaccuracy rates
Data(s) |
04/11/2013
|
---|---|
Resumo |
In this paper, we propose a novel online hidden Markov model (HMM) parameter estimator based on Kerridge inaccuracy rate (KIR) concepts. Under mild identifiability conditions, we prove that our online KIR-based estimator is strongly consistent. In simulation studies, we illustrate the convergence behaviour of our proposed online KIR-based estimator and provide a counter-example illustrating the local convergence properties of the well known recursive maximum likelihood estimator (arguably the best existing solution). |
Formato |
application/pdf |
Identificador | |
Relação |
http://eprints.qut.edu.au/66066/1/MF.4.Final.pdf DOI:10.1109/AUCC.2013.6697250 Molloy, Timothy L. & Ford, Jason J. (2013) Consistent HMM parameter estimation using Kerridge inaccuracy rates. In Australian Control Conference (AUCC 2013), 4-5 November 2013, Perth, Australia. |
Direitos |
Copyright 2013 Engineers Australia |
Fonte |
School of Electrical Engineering & Computer Science; Faculty of Science and Technology |
Palavras-Chave | #010405 Statistical Theory #090609 Signal Processing #parameter estimation #Kerridge inaccuracy #hidden Markov model |
Tipo |
Conference Paper |