Consistent HMM parameter estimation using Kerridge inaccuracy rates


Autoria(s): Molloy, Timothy L.; Ford, Jason J.
Data(s)

04/11/2013

Resumo

In this paper, we propose a novel online hidden Markov model (HMM) parameter estimator based on Kerridge inaccuracy rate (KIR) concepts. Under mild identifiability conditions, we prove that our online KIR-based estimator is strongly consistent. In simulation studies, we illustrate the convergence behaviour of our proposed online KIR-based estimator and provide a counter-example illustrating the local convergence properties of the well known recursive maximum likelihood estimator (arguably the best existing solution).

Formato

application/pdf

Identificador

http://eprints.qut.edu.au/66066/

Relação

http://eprints.qut.edu.au/66066/1/MF.4.Final.pdf

DOI:10.1109/AUCC.2013.6697250

Molloy, Timothy L. & Ford, Jason J. (2013) Consistent HMM parameter estimation using Kerridge inaccuracy rates. In Australian Control Conference (AUCC 2013), 4-5 November 2013, Perth, Australia.

Direitos

Copyright 2013 Engineers Australia

Fonte

School of Electrical Engineering & Computer Science; Faculty of Science and Technology

Palavras-Chave #010405 Statistical Theory #090609 Signal Processing #parameter estimation #Kerridge inaccuracy #hidden Markov model
Tipo

Conference Paper