50 resultados para Decision Quality
em Universidade do Minho
Resumo:
Business Intelligence (BI) can be seen as a method that gathers information and data from information systems in order to help companies to be more accurate in their decision-making process. Traditionally BI systems were associated with the use of Data Warehouses (DW). The prime purpose of DW is to serve as a repository that stores all the relevant information required for making the correct decision. The necessity to integrate streaming data became crucial with the need to improve the efficiency and effectiveness of the decision process. In primary and secondary education, there is a lack of BI solutions. Due to the schools reality the main purpose of this study is to provide a Pervasive BI solution able to monitoring the schools and student data anywhere and anytime in real-time as well as disseminating the information through ubiquitous devices. The first task consisted in gathering data regarding the different choices made by the student since his enrolment in a certain school year until the end of it. Thereafter a dimensional model was developed in order to be possible building a BI platform. This paper presents the dimensional model, a set of pre-defined indicators, the Pervasive Business Intelligence characteristics and the prototype designed. The main contribution of this study was to offer to the schools a tool that could help them to make accurate decisions in real-time. Data dissemination was achieved through a localized application that can be accessed anywhere and anytime.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão Industrial
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Autor proof
Resumo:
This paper presents a critical and quantitative analysis of the influence of the Power Quality in grid connected solar photovoltaic microgeneration installations. First are introduced the main regulations and legislation related with the solar photovoltaic microgeneration, in Portugal and Europe. Next are presented Power Quality monitoring results obtained from two residential solar photovoltaic installations located in the north of Portugal, and is explained how the Power Quality events affect the operation of these installations. Afterwards, it is described a methodology to estimate the energy production losses and the impact in the revenue caused by the abnormal operation of the electrical installation. This is done by comparing the amount of energy that was injected into the power grid with the theoretical value of energy that could be injected in normal conditions. The performed analysis shows that Power Quality severally affects the solar photovoltaic installations operation. The losses of revenue in the two monitored installations M1 and M2 are estimated in about 27% and 22%, respectively.
Resumo:
The selective collection of municipal solid waste for recycling is a very complex and expensive process, where a major issue is to perform cost-efficient waste collection routes. Despite the abundance of commercially available software for fleet management, they often lack the capability to deal properly with sequencing problems and dynamic revision of plans and schedules during process execution. Our approach to achieve better solutions for the waste collection process is to model it as a vehicle routing problem, more specifically as a team orienteering problem where capacity constraints on the vehicles are considered, as well as time windows for the waste collection points and for the vehicles. The final model is called capacitated team orienteering problem with double time windows (CTOPdTW).We developed a genetic algorithm to solve routing problems in waste collection modelled as a CTOPdTW. The results achieved suggest possible reductions of logistic costs in selective waste collection.
Resumo:
Discussing urban planning requires rethinking sustainability in cities and building healthy environments. Historically, some aspects of advancing the urban way of life have not been considered important in city planning. This is particularly the case where technological advances have led to conflicting land use, as with the installation of power poles and building electrical substations near residential areas. This research aims to discuss and rethink sustainability in cities, focusing on the environmental impact of low-frequency noise and electromagnetic radiation on human health. It presents data from a case study in an urban space in northern Portugal, and focuses on four guiding questions: Can power poles and power lines cause noise? Do power poles and power lines cause discomfort? Do power poles and power lines cause discomfort due to noise? Can power poles and power lines affect human health? To answer these questions, we undertook research between 2014 and 2015 that was comprised of two approaches. The first approach consisted of evaluating the noise of nine points divided into two groups â near the sourceâ (e.g., up to 50 m from power poles) and â away from the sourceâ (e.g., more than 250 m away from the source). In the second approach, noise levels were measured for 72 h in houses located up to 20 m from the source. The groups consist of residents living within the distance range specified for each group. The measurement values were compared with the proposed criteria for assessing low-frequency noise using the DEFRA Guidance (University of Salford). In the first approach, the noise caused discomfort, regardless of the group. In the second approach, the noise had fluctuating characteristics, which led us to conclude that the noise caused discomfort.
Resumo:
To solve a health and safety problem on a waste treatment facility, different multicriteria decision methods were used, including the PROV Exponential decision method. Four alternatives and ten attributes were considered. We found a congruent solution, validated by the different methods. The AHP and the PROV Exponential decision method led us to the same options ordering, but the last method reinforced one of the options as being the best performing one, and detached the least performing option. Also, the ELECTRE I method results led to the same ordering which allowed to point the best solution with reasonable confidence. This paper demonstrates the potential of using multicriteria decision methods to support decision making on complex problems such as risk control and accidents prevention.
Resumo:
Accessibility is nowadays an important issue for the development of cities. It is seen as a priority in order toguarantee equal access to fundamental rights, to improve the quality of life of citizens and to ensure that everyone, regardless of age, mobility or ability, have equal access to all the resources and benefits cities have to offer. Consequently, factors closely related to the accessibility have gained a higher relevance for identifying and assessing the location of urban facilities. The main goal of the paper is to present an accessibility evaluation model applied in Santarém, in Brazil, a city located midway between the larger cities of Belem and Manaus. The research instruments, sampling method and data analysis proposed for mapping urban accessibility are described. Daily activities were used to identify and group key destinations. The model was implemented within a geographic information system and integrates the individualâ s perspective through the definition of each key destination weight, reflecting their significance for daily activities in the urban area. Accessibility to key destinations was mapped over 24 districts of the city of Santarém. The results of this model application can support city administration decision-making for new investments in order to improve urban quality of life.
Resumo:
Given the current economic situation of the Portuguese municipalities, it is necessary to identify the priority investments in order to achieve a more efficient financial management. The classification of the road network of the municipality according to the occurrence of traffic accidents is fundamental to set priorities for road interventions. This paper presents a model for road network classification based on traffic accidents integrated in a geographic information system. Its practical application was developed through a case study in the municipality of Barcelos. An equation was defined to obtain a road safety index through the combination of the following indicators: severity, property damage only and accident costs. In addition to the road network classification, the application of the model allows to analyze the spatial coverage of accidents in order to determine the centrality and dispersion of the locations with the highest incidence of road accidents. This analysis can be further refined according to the nature of the accidents namely in collision, runoff and pedestrian crashes.
Resumo:
Hospitals are nowadays collecting vast amounts of data related with patient records. All this data hold valuable knowledge that can be used to improve hospital decision making. Data mining techniques aim precisely at the extraction of useful knowledge from raw data. This work describes an implementation of a medical data mining project approach based on the CRISP-DM methodology. Recent real-world data, from 2000 to 2013, were collected from a Portuguese hospital and related with inpatient hospitalization. The goal was to predict generic hospital Length Of Stay based on indicators that are commonly available at the hospitalization process (e.g., gender, age, episode type, medical specialty). At the data preparation stage, the data were cleaned and variables were selected and transformed, leading to 14 inputs. Next, at the modeling stage, a regression approach was adopted, where six learning methods were compared: Average Prediction, Multiple Regression, Decision Tree, Artificial Neural Network ensemble, Support Vector Machine and Random Forest. The best learning model was obtained by the Random Forest method, which presents a high quality coefficient of determination value (0.81). This model was then opened by using a sensitivity analysis procedure that revealed three influential input attributes: the hospital episode type, the physical service where the patient is hospitalized and the associated medical specialty. Such extracted knowledge confirmed that the obtained predictive model is credible and with potential value for supporting decisions of hospital managers.
Resumo:
Using a sample of Portuguese audit firms and their client companies, this study examines the association between gender composition of the partnership structure oaudit firms and audit quality. Audit quality is measured through the earnings quality of audit clients. We find that gender diversity in the partnership structure of audit firms, per se, has no association with audit quality. In turn, we find significant evidence that a predominant presence of female Certified Public Accountants (CPAs) in partner positions in audit firms is associated with higher audit quality. In particular, the results indicate that audit firms with female-dominated partnership structures are negatively related with aggressive accounting practices in audit clients.
Resumo:
"Lecture notes in computer science series, ISSN 0302-9743, vol. 9273"
Resumo:
Dissertação de mestrado em Construção e Reabilitação Sustentáveis
Resumo:
When a pregnant woman is guided to a hospital for obstetrics purposes, many outcomes are possible, depending on her current conditions. An improved understanding of these conditions could provide a more direct medical approach by categorizing the different types of patients, enabling a faster response to risk situations, and therefore increasing the quality of services. In this case study, the characteristics of the patients admitted in the maternity care unit of Centro Hospitalar of Porto are acknowledged, allowing categorizing the patient women through clustering techniques. The main goal is to predict the patients’ route through the maternity care, adapting the services according to their conditions, providing the best clinical decisions and a cost-effective treatment to patients. The models developed presented very interesting results, being the best clustering evaluation index: 0.65. The evaluation of the clustering algorithms proved the viability of using clustering based data mining models to characterize pregnant patients, identifying which conditions can be used as an alert to prevent the occurrence of medical complications.