33 resultados para Organic food
Resumo:
In this work we produce and study the flexible organic–inorganic hybrid moisture barrier layers for the protection of air sensitive organic opto-electronic devices. The inorganic amorphous silicon nitride layer (SiNx:H) and the organic PMMA [poly (methyl methacrylate)] layer are deposited alternatingly by using hot wire chemical vapor deposition (HW-CVD) and spin-coating techniques, respectively. The effect of organic–inorganic hybrid interfaces is analyzed for increasing number of interfaces. We produce highly transparent (∼80% in the visible region) hybrid structures. The morphological properties are analysed providing a good basis for understanding the variation of the water vapor transmission rate (WVTR) values. A minimum WVTR of 4.5 × 10−5g/m2day is reported at the ambient atmospheric conditions for 7 organic/inorganic interfaces. The hybrid barriers show superb mechanical flexibility which confirms their high potential for flexible applications.
Resumo:
The aim of this study was to characterize sweet cherry regarding nutritional composition of the fruits, and individual phytochemicals and bioactive properties of fruits and stems. The chromatographic profiles in sugars, organic acids, fatty acids, tocopherols and phenolic compounds were established. All the preparations (extracts, infusions and decoctions) obtained using stems revealed higher antioxidant potential than the fruits extract, which is certainly related with its higher phenolic compounds (phenolic acids and flavonoids) concentration. The fruits extract was the only one showing antitumor potential, revealing selectivity against HCT-15 (colon carcinoma) (GI50~74 μg/mL). This could be related with anthocyanins that were only found in fruits and not in stems. None of the preparations have shown hepatotoxicity against normal primary cells. Overall, this study reports innovative results regarding chemical and bioactive properties of sweet cherry stems, and confirmed the nutritional and antioxidant characteristics of their fruits.
Resumo:
This Special Issue gathers selected contributions from the 1st Congress on Food Structure Design, covering most of the topics described above.
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica
Resumo:
Undergraduate medical education is moving from traditional disciplinary basic science courses into more integrated curricula. Integration models based on organ systems originated in the 1950s, but few longitudinal studies have evaluated their effectiveness. This article outlines the development and implementation of the Organic and Functional Systems (OFS) courses at the University of Minho in Portugal, using evidence collected over 10 years. It describes the organization of content, student academic performance and acceptability of the courses, the evaluation of preparedness for future courses and the retention of knowledge on basic sciences. Students consistently rated the OFS courses highly. Physician tutors in subsequent clinical attachments considered that students were appropriately prepared. Performance in the International Foundations of Medicine examination of a self-selected sample of students revealed similar performances in basic science items after the last OFS course and 4 years later, at the moment of graduation. In conclusion, the organizational and pedagogical approaches of the OFS courses achieve high acceptability by students and result in positive outcomes in terms of preparedness for subsequent training and long-term retention of basic science knowledge.
Resumo:
Lactic acid bacteria (LAB) play a key role in the biopreservation of a wide range of fermented food products, such as yogurt, cheese, fermented milks, meat, fish, vegetables (sauerkraut, olives and pickles), certain beer brands, wines and silage, allowing their safe consumption, which gave to these bacteria a GRAS (Generally Recognised as Safe) status. Besides that, the use of LAB in food and feed is a promising strategy to reduce the exposure to dietary mycotoxins, improving their shelf life and reducing health risks, given the unique mycotoxin decontaminating characteristic of some LAB. Mycotoxins present carcinogenic, mutagenic, teratogenic, neurotoxic and immunosuppressive effects over animals and Humans, being the most important ochratoxin A (OTA), aflatoxins (AFB1), trichothecenes, zearalenone (ZEA), fumonisin (FUM) and patulin. In a previous work of our group it was observed OTA biodegradation by some strains of Pediococcus parvulus isolated from Douro wines. So, the aim of this study was to enlarge the screening of the biodetoxification over more mycotoxins besides OTA, including AFB1, and ZEA. This ability was checked in a collection of LAB isolated from vegetable (wine, olives, fruits and silage) and animal (milk and dairy products, sausages) sources. All LAB strains were characterized phenotypically (Gram, catalase) and genotypically. Molecular characterisation of all LAB strains was performed using genomic fingerprinting by MSP- PCR with (GTG)5 and csM13 primers. The identification of the isolates was confirmed by 16S rDNA sequencing. To study the ability of LAB strains to degrade OTA, AFB1 and ZEA, a MRS broth medium was supplemented with 2.0 g/mL of each mycotoxin. For each strain, 2 mL of MRS supplemented with the mycotoxins was inoculated in triplicate with 109 CFU/mL. The culture media and bacterial cells were extracted by the addition of an equal volume of acetonitrile/methanol/acetic acid (78:20:2 v/v/v) to the culture tubes. A 2 mL sample was then collected and filtered into a clean 2 mL vial using PP filters with 0.45 m pores. The samples were preserved at 4 °C until HPLC analysis. Among LAB tested, 10 strains isolated from milk were able to eliminate AFB1, belonging to Lactobacillus casei (7), Lb. paracasei (1), Lb. plantarum (1) and 1 to Leuconostoc mesenteroides. Two strains of Enterococcus faecium and one of Ec. faecalis from sausage eliminated ZEA. Concerning to strains of vegetal origin, one Lb. plantarum isolated from elderberry fruit, one Lb. buchnerii and one Lb. parafarraginis both isolated from silage eliminated ZEA. Other 2 strains of Lb. plantarum from silage were able to degrade both ZEA and OTA, and 1 Lb. buchnerii showed activity over AFB1. These enzymatic activities were also verified genotypically through specific gene PCR and posteriorly confirmed by sequencing analysis. In conclusion, due the ability of some strains of LAB isolated from different sources to eliminate OTA, AFB1 and ZEA one can recognize their potential biotechnological application to reduce the health hazards associated with these mycotoxins. They may be suitable as silage inoculants or as feed additives or even in food industry.
Resumo:
The presence of mycotoxins in foodstuff is a matter of concern for food safety. Mycotoxins are toxic secondary metabolites produced by certain molds, being ochratoxin A (OTA) one of the most relevant. Wines can also be contaminated with these toxicants. Several authors have demonstrated the presence of mycotoxins in wine, especially ochratoxin A (OTA) [1]. Its chemical structure is a dihydro-isocoumarin connected at the 7-carboxy group to a molecule of L--phenylalanine via an amide bond. As these toxicants can never be completely removed from the food chain, many countries have defined levels in food in order to attend health concerns. OTA contamination of wines might be a risk to consumer health, thus requiring treatments to achieve acceptable standards for human consumption [2]. The maximum acceptable level of OTA in wines is 2.0 g/kg according to the Commission regulation No. 1881/2006 [3]. Therefore, the aim of this work was to reduce OTA to safer levels using different fining agents, as well as their impact on white wine physicochemical characteristics. To evaluate their efficiency, 11 commercial fining agents (mineral, synthetic, animal and vegetable proteins) were used to get new approaches on OTA removal from white wine. Trials (including a control without addition of a fining agent) were performed in white wine artificially supplemented with OTA (10 µg/L). OTA analysis were performed after wine fining. Wine was centrifuged at 4000 rpm for 10 min and 1 mL of the supernatant was collected and added of an equal volume of acetonitrile/methanol/acetic acid (78:20:2 v/v/v). Also, the solid fractions obtained after fining, were centrifuged (4000 rpm, 15 min), the resulting supernatant discarded, and the pellet extracted with 1 mL of the above solution and 1 mL of H2O. OTA analysis was performed by HPLC with fluorescence detection according to Abrunhosa and Venâncio [4]. The most effective fining agent in removing OTA (80%) from white wine was a commercial formulation that contains gelatine, bentonite and activated carbon. Removals between 10-30% were obtained with potassium caseinate, yeast cell walls and pea protein. With bentonites, carboxymethylcellulose, polyvinylpolypyrrolidone and chitosan no considerable OTA removal was verified. Following, the effectiveness of seven commercial activated carbons was also evaluated and compared with the commercial formulation that contains gelatine, bentonite and activated carbon. The different activated carbons were applied at the concentration recommended by the manufacturer in order to evaluate their efficiency in reducing OTA levels. Trial and OTA analysis were performed as explained previously. The results showed that in white wine all activated carbons except one reduced 100% of OTA. The commercial formulation that contains gelatine, bentonite and activated carbon (C8) reduced only 73% of OTA concentration. These results may provide useful information for winemakers, namely for the selection of the most appropriate oenological product for OTA removal, reducing wine toxicity and simultaneously enhancing food safety and wine quality.
Resumo:
Partition behavior of adenosine and guanine mononucleotides was examined in aqueous dextran-polyethylene glycol (PEG) and PEG-sodium sulfate two-phase systems. The partition coefficients for each series of mononucleotides were analyzed as a functions of the number of phosphate groups and found to be dependent on the nature of nucleic base and on the type of \ATPS\ utilized. It was concluded that an average contribution of a phosphate group into logarithm of partition coefficient of a mononucleotide cannot be used to estimate the difference between the electrostatic properties of the coexisting phases of ATPS. The data obtained in this study were considered together with those for other organic compounds and proteins reported previously, and the linear interrelationship between logarithms of partition coefficients in dextran-PEG, PEG-Na2SO4 and PEG-Na2SO4-0.215 M NaCl (all in 0.01 M Na- or K/Na-phosphate buffer, pH 7.4 or 6.8) was established. Similar relationship was found for the previously reported data for proteins in Dex-PEG, PEG-600-Na2SO4, and PEG-8000-Na2SO4 ATPS. It is suggested that the linear relationships of the kind established in \ATPS\ may be observed for biological properties of compounds as well.
Resumo:
Polysaccharides and oligosaccharides can improve quality and enhance nutritional value of final food products due to their technological and nutritional features ranging from their capacity to improve texture to their effect as dietary fibers. For this reason, they are among the most studied ingredients in the food industry. The use of natural polysaccharides and oligosaccharides as food additives has been a reality since the food industry understood their potential technological and nutritional applications. Currently, the replacement of traditional ingredients and/or the synergy between traditional ingredients and polysaccharides and oligosaccharides are perceived as promising approaches by the food industry. Traditionally, polysaccharides have been used as thickening, emulsifying, and stabilizing agents, however, at this moment polysaccharides and oligosaccharides claim health and nutritional advantages, thus opening a new market of nutritional and functional foods. Indeed, their use as nutritional food ingredients enabled the food industry to develop a countless number of applications, e.g., fat replacers, prebiotics, dietary fiber, and antiulcer agents. Based on this, among the scientific community and food industry, in the last years many research studies and commercial products showed the possibility of using either new or already used sources (though with changed properties) of polysaccharides for the production of food additives with new and enhanced properties. The increasing interest in such products is clearly illustrated by the market figures and consumption trends. As an example, the sole market of hydrocolloids is estimated to reach $7 billion in 2018. Moreover, oligosaccharides can be found in more than 500 food products resulting in a significant daily consumption. A recent study from the Transparency Market Research on Prebiotic Ingredients Market reported that prebiotics' demand was worth $2.3 billion in 2012 and it is estimated to reach $4.5 billion in 2018, growing at a compound annual growth rate of 11.4% between 2012 and 2018. The entrance of this new generation of food additives in the market, often claiming health and nutritional benefits, imposes an impartial analysis by the legal authorities regarding the accomplishment of requirements that have been established for introducing novel ingredients/food, including new poly- and oligosaccharides. This chapter deals with the potential use of polysaccharides and oligosaccharides as food additives, as well as alternative sources of these compounds and their possible applications in food products. Moreover, the regulation process to introduce novel polysaccharides and oligosaccharides in the market as food additives and to assign them health claims is discussed.
Resumo:
Biofilms in food processing plants represent not only a problem to human health but also cause economic losses by technical failure in several systems. In fact, many foodborne outbreaks have been found to be associated with biofilms. Biofilms may be prevented by regular cleaning and disinfection, but this does not completely prevent biofilm formation. Besides, due to their diversity and to the development of specialized phenotypes, it is well known that biofilms are more resistant to cleaning and disinfection than planktonic microorganisms. In recent years, a considerable effort has been made in the prevention of microbial adhesion and biofilm formation on food processing surfaces and novel technologies have been introduced. In this context, this chapter discusses the main conventional and emergent strategies that have been employed to prevent bacterial adhesion to food processing surfaces and thus to efficiently maintain good hygiene throughout the food industries.
Resumo:
[Excerpt] Introduction: Thermal processing is probably the most important process in food industry that has been used since prehistoric times, when it was discovered that heat enhanced the palatability and the life of the heat-treated food. Thermal processing comprehends the heating of foods at a defined temperature for a certain length of time. However, in some foods, the high thermotolerance of certain enzymes and microorganisms, their physical properties (e.g.,highviscosity),ortheircomponents(e.g.,solidfractions) require the application of extreme heat treatments that not only are energy intensive, but also will adversely affect the nutritional and organoleptic properties of the food. Technologies such as ohmic heating, dielectric heating (which includes microwave heating and radiofrequency heating), inductive heating, and infrared heating are available to replace, or complement, the traditional heat-dependent technologies (heating through superheated steam, hot air, hot water, or other hot liquid, being the heating achieved either through direct contact with those agents – mostly superheated steam – or through contact with a hot surface which is in turn heated by such agents). Given that the “traditional” heatdependent technologies are thoroughly described in the literature, this text will be mainly devoted to the so-called “novel” thermal technologies. (...)
Resumo:
The prelims comprise: * Half-Title Page * Dedication Page * Title Page * Copyright Page * Table of Contents * Foreword * Acknowledgements * Disclaimer * Introduction
Resumo:
Dissertação de mestrado em Ecology
Resumo:
Dissertação de mestrado em Ecology
Resumo:
The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb. 2016.00390