127 resultados para power measurements
em Indian Institute of Science - Bangalore - Índia
Resumo:
The low-frequency (5–100 kHz) dielectric constant ε has been measured in the temperature range 7 × 10−5 < T = (T − Tc)/Tc < 8 × 10−2. Near Tc an exponent ≈0.11 characterizes the power law behaviour of dε/dt consistent with the theoretically predicted t−α singularity. However, over the full range of t an exponent ≈0.35 is obtained.
Resumo:
Contention-based multiple access is a crucial component of many wireless systems. Multiple-packet reception (MPR) schemes that use interference cancellation techniques to receive and decode multiple packets that arrive simultaneously are known to be very efficient. However, the MPR schemes proposed in the literature require complex receivers capable of performing advanced signal processing over significant amounts of soft undecodable information received over multiple contention steps. In this paper, we show that local channel knowledge and elementary received signal strength measurements, which are available to many receivers today, can actively facilitate multipacket reception and even simplify the interference canceling receiver¿s design. We introduce two variants of a simple algorithm called Dual Power Multiple Access (DPMA) that use local channel knowledge to limit the receive power levels to two values that facilitate successive interference cancellation. The resulting receiver structure is markedly simpler, as it needs to process only the immediate received signal without having to store and process signals received previously. Remarkably, using a set of three feedback messages, the first variant, DPMA-Lite, achieves a stable throughput of 0.6865 packets per slot. Using four possible feedback messages, the second variant, Turbo-DPMA, achieves a stable throughput of 0.793 packets per slot, which is better than all contention algorithms known to date.
Resumo:
The low-frequency (5–100 kHz) dielectric constant epsilon (Porson) has been measured in the temperature range 7 × 10−5 < t = (T − Tc)/Tc < 8 × 10−2. Near Tc an exponent ≈0.11 characterizes the power law behaviour of Image consistent with the theoretically predicted t−α singularity. However, over the full range of t an exponent ≈0.35 is obtained.
Resumo:
A new approach based on finite difference method, is proposed for the simulation of electrical conditions in a dc energized wire-duct electrostatic precipitator with and without dust loading. Simulated voltage-curren characteristics with and without dust loading were compared with the measured characteristics for analyzing the performance of a precipitator. The simple finite difference method gives sufficiently accurate results with reduced mesh size. The results for dust free simulation were validated with published experimental data. Further measurements were conducted at a thermal power plant in India and the results compares well with the measured ones.
Resumo:
This paper presents an Artificial Neural Network (ANN) approach for locating faults in distribution systems. Different from the traditional Fault Section Estimation methods, the proposed approach uses only limited measurements. Faults are located according to the impedances of their path using a Feed Forward Neural Networks (FFNN). Various practical situations in distribution systems, such as protective devices placed only at the substation, limited measurements available, various types of faults viz., three-phase, line (a, b, c) to ground, line to line (a-b, b-c, c-a) and line to line to ground (a-b-g, b-c-g, c-a-g) faults and a wide range of varying short circuit levels at substation, are considered for studies. A typical IEEE 34 bus practical distribution system with unbalanced loads and with three- and single- phase laterals and a 69 node test feeder with different configurations are considered for studies. The results presented show that the proposed approach of fault location gives close to accurate results in terms of the estimated fault location.
Resumo:
A simple apparatus to measure the absolute thermoelectric power of solids in the temperature range 4·2–300K is described. The cryostat and the associated instrumentation is simple to operate. Representative data of measurements on metallic wire and pressed pellets are given. An accuracy of better than 10% in absolute thermopower can be obtained in this apparatus.
Resumo:
We have developed a novel nanoparticle tracking based interface microrheology technique to perform in situ studies on confined complex fluids. To demonstrate the power of this technique, we show, for the first time, how in situ glass formation in polymers confined at air-water interface can be directly probed by monitoring variation of the mean square displacement of embedded nanoparticles as a function of surface density. We have further quantified the appearance of dynamic heterogeneity and hence vitrification in polymethyl methacrylate monolayers above a certain surface density, through the variation of non-Gaussian parameter of the probes. (C) 2010 American Institute of Physics. [doi:10.1063/1.3471584].
Resumo:
Results are reported of comparative measurements made in 14 HV (high-voltage) laboratories in ten different countries. The theory of the proposed methods of characterizing the dynamic behavior is given, and the parameters to be used are discussed. Comparative measurements made using 95 systems based on 53 dividers are analyzed. This analysis shows that many of the system now in use, even though they fulfil the basic response requirements of the standards, do not meet the accuracy requirements. Because no transfer measurements were made between laboratories, there is no way to detect similar errors in both the system under test and the reference system. Hence, the situation may be worse than reported. This has led to the recommendation that comparative measurements should be the main route for quantifying industrial impulse measuring systems
Resumo:
We present noise measurements of a phase fluorometric oxygen sensor that sets the limits of accuracy for this instrument. We analyze the phase sensitive detection measurement system with the signal ''shot'' noise being the only significant contribution to the system noise. Based on the modulated optical power received by the photomultiplier, the analysis predicts a noise spectral power density that was within 3 dB of the measured power spectral noise density. Our results demonstrate that at a received optical power of 20 fW the noise level was low enough to permit the detection of a change oxygen concentration of 1% at the sensor. We also present noise measurements of a new low-cost version of this instrument that uses a photodiode instead of a photomultiplier. These measurements show that the noise for this instrument was limited by noise generated in the preamplifier following the photodiode. (C) 1996 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Filtering methods are explored for removing noise from data while preserving sharp edges that many indicate a trend shift in gas turbine measurements. Linear filters are found to be have problems with removing noise while preserving features in the signal. The nonlinear hybrid median filter is found to accurately reproduce the root signal from noisy data. Simulated faulty data and fault-free gas path measurement data are passed through median filters and health residuals for the data set are created. The health residual is a scalar norm of the gas path measurement deltas and is used to partition the faulty engine from the healthy engine using fuzzy sets. The fuzzy detection system is developed and tested with noisy data and with filtered data. It is found from tests with simulated fault-free and faulty data that fuzzy trend shift detection based on filtered data is very accurate with no false alarms and negligible missed alarms.
Resumo:
Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead-lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not available in most of the power plants. Full state feedback controllers require feedback of other machine states in a multi-machine power system and necessitate block diagonal structure constraints for decentralized implementation. This paper investigates the design of Linear Quadratic Power System Stabilizers using a recently proposed modified Heffron-Phillip's model. This model is derived by taking the secondary bus voltage of the step-up transformer as reference instead of the infinite bus. The state variables of this model can be obtained by local measurements. This model allows a coordinated linear quadratic control design in multi machine systems. The performance of the proposed controller has been evaluated on two widely used multi-machine power systems, 4 generator 10 bus and 10 generator 39 bus systems. It has been observed that the performance of the proposed controller is superior to that of the conventional Power System Stabilizers (PSS) over a wide range of operating and system conditions.
Resumo:
We propose a power scalable digital base band for a low-IF receiver for IEEE 802.15.4-2006. The digital section's sampling frequency and bit width are used as knobs to reduce the power under favorable signal and interference scenarios, thus recovering the design margins introduced to handle worst case conditions. We propose tuning of these knobs based on measurements of Signal and the interference levels. We show that in a 0.13u CMOS technology, for an adaptive digital base band section of the receiver designed to meet the 802.15.4 standard specification, power saving can be up to nearly 85% (0.49mW against 3.3mW) in favorable interference and signal conditions.
Resumo:
This paper presents methodologies for incorporating phasor measurements into conventional state estimator. The angle measurements obtained from Phasor Measurement Units are handled as angle difference measurements rather than incorporating the angle measurements directly. Handling in such a manner overcomes the problems arising due to the choice of reference bus. Current measurements obtained from Phasor Measurement Units are treated as equivalent pseudo-voltage measurements at the neighboring buses. Two solution approaches namely normal equations approach and linear programming approach are presented to show how the Phasor Measurement Unit measurements can be handled. Comparative evaluation of both the approaches is also presented. Test results on IEEE 14 bus system are presented to validate both the approaches.
Resumo:
This paper presents a multi-class support vector machine (SVMs) approach for locating and diagnosing faults in electric power distribution feeders with the penetration of Distributed Generations (DGs). The proposed approach is based on the three phase voltage and current measurements which are available at all the sources i.e. substation and at the connection points of DG. To illustrate the proposed methodology, a practical distribution feeder emanating from 132/11kV-grid substation in India with loads and suitable number of DGs at different locations is considered. To show the effectiveness of the proposed methodology, practical situations in distribution systems (DS) such as all types of faults with a wide range of varying fault locations, source short circuit (SSC) levels and fault impedances are considered for studies. The proposed fault location scheme is capable of accurately identify the fault type, location of faulted feeder section and the fault impedance. The results demonstrate the feasibility of applying the proposed method in practical in smart grid distribution automation (DA) for fault diagnosis.
Resumo:
This study investigates the application of support vector clustering (SVC) for the direct identification of coherent synchronous generators in large interconnected multi-machine power systems. The clustering is based on coherency measure, which indicates the degree of coherency between any pair of generators. The proposed SVC algorithm processes the coherency measure matrix that is formulated using the generator rotor measurements to cluster the coherent generators. The proposed approach is demonstrated on IEEE 10 generator 39-bus system and an equivalent 35 generators, 246-bus system of practical Indian southern grid. The effect of number of data samples and fault locations are also examined for determining the accuracy of the proposed approach. An extended comparison with other clustering techniques is also included, to show the effectiveness of the proposed approach in grouping the data into coherent groups of generators. This effectiveness of the coherent clusters obtained with the proposed approach is compared in terms of a set of clustering validity indicators and in terms of statistical assessment that is based on the coherency degree of a generator pair.