Decentralized linear quadratic power system stabilizers for multi-machine power systems
Data(s) |
2012
|
---|---|
Resumo |
Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead-lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not available in most of the power plants. Full state feedback controllers require feedback of other machine states in a multi-machine power system and necessitate block diagonal structure constraints for decentralized implementation. This paper investigates the design of Linear Quadratic Power System Stabilizers using a recently proposed modified Heffron-Phillip's model. This model is derived by taking the secondary bus voltage of the step-up transformer as reference instead of the infinite bus. The state variables of this model can be obtained by local measurements. This model allows a coordinated linear quadratic control design in multi machine systems. The performance of the proposed controller has been evaluated on two widely used multi-machine power systems, 4 generator 10 bus and 10 generator 39 bus systems. It has been observed that the performance of the proposed controller is superior to that of the conventional Power System Stabilizers (PSS) over a wide range of operating and system conditions. |
Formato |
application/pdf |
Identificador |
http://eprints.iisc.ernet.in/45289/1/sadhana_37-4_521_2012.pdf Reddy, Venkateswara A and Kumar, Vijay M and Sen, Indraneel and Gurrala, Gurunath (2012) Decentralized linear quadratic power system stabilizers for multi-machine power systems. In: SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 37 (4). pp. 521-537. |
Publicador |
INDIAN ACAD SCIENCES |
Relação |
http://dx.doi.org/10.1007/s12046-012-0091-3 http://eprints.iisc.ernet.in/45289/ |
Palavras-Chave | #Electrical Engineering |
Tipo |
Journal Article PeerReviewed |