114 resultados para linear quadratic Gaussian control
em Indian Institute of Science - Bangalore - Índia
Resumo:
Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead-lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not available in most of the power plants. Full state feedback controllers require feedback of other machine states in a multi-machine power system and necessitate block diagonal structure constraints for decentralized implementation. This paper investigates the design of Linear Quadratic Power System Stabilizers using a recently proposed modified Heffron-Phillip's model. This model is derived by taking the secondary bus voltage of the step-up transformer as reference instead of the infinite bus. The state variables of this model can be obtained by local measurements. This model allows a coordinated linear quadratic control design in multi machine systems. The performance of the proposed controller has been evaluated on two widely used multi-machine power systems, 4 generator 10 bus and 10 generator 39 bus systems. It has been observed that the performance of the proposed controller is superior to that of the conventional Power System Stabilizers (PSS) over a wide range of operating and system conditions.
Resumo:
In this paper, an alternative apriori and aposteriori formulation has been derived for the discrete linear quadratic regulator (DLQR) in a manner analogous to that used in the discrete Kalman filter. It has been shown that the formulation seamlessly fits into the available formulation of the DLQR and the equivalent terms in the existing formulation and the proposed formulation have been identified. Thereafter, the significance of this alternative formulation has been interpreted in terms of the sensitivity of the controller performances to any changes in the states or to changes in the control inputs. The implications of this alternative formulation to adaptive controller tuning have also been discussed.
Resumo:
High-speed evaluation of a large number of linear, quadratic, and cubic expressions is very important for the modeling and real-time display of objects in computer graphics. Using VLSI techniques, chips called pixel planes have actually been built by H. Fuchs and his group to evaluate linear expressions. In this paper, we describe a topological variant of Fuchs' pixel planes which can evaluate linear, quadratic, cubic, and higher-order polynomials. In our design, we make use of local interconnections only, i.e., interconnections between neighboring processing cells. This leads to the concept of tiling the processing cells for VLSI implementation.
Resumo:
We study the phenomenon of electromagnetically induced transparency and absorption (EITA) using a control laser with a Laguerre-Gaussian (LG) profile instead of the usual Gaussian profile, and observe significant narrowing of the resonance widths. Aligning the probe beam to the central hole in the doughnut-shaped LG control beam allows simultaneously a strong control intensity required for high signal-to-noise ratio and a low intensity in the probe region required to get narrow resonances. Experiments with an expanded Gaussian control and a second-order LG control show that transit time and orbital angular momentum do not play a significant role. This explanation is borne out by a density-matrix analysis with a radially varying control Rabi frequency. We observe these resonances using degenerate two-level transitions in the D-2 line of Rb-87 in a room temperature vapor cell, and an EIA resonance with width up to 20 times below the natural linewidth for the F = 2 -> F' = 3 transition. Thus the use of LG beams should prove advantageous in all applications of EITA and other kinds of pump-probe spectroscopy as well.
Resumo:
This paper presents a dan-based evolutionary approach for solving control problems. Three selected control problems, viz. linear-quadratic, harvest, and push-cart problems, are solved using the proposed approach. Results are compared with those of the evolutionary programming (EP) approach. In most of the cases, the proposed approach is successful in obtaining (near) optimal solutions for these selected problems.
Resumo:
The recently developed single network adaptive critic (SNAC) design has been used in this study to design a power system stabiliser (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. PSS design is formulated as a discrete non-linear quadratic regulator problem. SNAC is then used to solve the resulting discrete-time optimal control problem. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a single machine infinite bus test system for various system and loading conditions. The proposed stabiliser, which is relatively easier to synthesise, consistently outperformed stabilisers based on conventional lead-lag and linear quadratic regulator designs.
Resumo:
Diabetes is a serious disease during which the body's production and use of insulin is impaired, causing glucose concentration level toincrease in the bloodstream. Regulating blood glucose levels as close to normal as possible, leads to a substantial decrease in long term complications of diabetes. In this paper, an intelligent neural network on-line optimal feedback treatment strategy based on nonlinear optimal control theory is presented for the disease using subcutaneous treatment strategy. A simple mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system is considered based on the Bergman's minimal model. A glucose infusion term representing the effect of glucose intake resulting from a meal is introduced into the model equations. The efficiency of the proposed controllers is shown taking random parameters and random initial conditions in presence of physical disturbances like food intake. A comparison study with linear quadratic regulator theory brings Out the advantages of the nonlinear control synthesis approach. Simulation results show that unlike linear optimal control, the proposed on-line continuous infusion strategy never leads to severe hypoglycemia problems.
Resumo:
Diabetes is a long-term disease during which the body's production and use of insulin are impaired, causing glucose concentration level to increase in the bloodstream. Regulating blood glucose levels as close to normal as possible leads to a substantial decrease in long-term complications of diabetes. In this paper, an intelligent online feedback-treatment strategy is presented for the control of blood glucose levels in diabetic patients using single network adaptive critic (SNAC) neural networks (which is based on nonlinear optimal control theory). A recently developed mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system has been revised and considered for synthesizing the neural network for feedback control. The idea is to replicate the function of pancreatic insulin, i.e. to have a fairly continuous measurement of blood glucose and a situation-dependent insulin injection to the body using an external device. Detailed studies are carried out to analyze the effectiveness of this adaptive critic-based feedback medication strategy. A comparison study with linear quadratic regulator (LQR) theory shows that the proposed nonlinear approach offers some important advantages such as quicker response, avoidance of hypoglycemia problems, etc. Robustness of the proposed approach is also demonstrated from a large number of simulations considering random initial conditions and parametric uncertainties. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
In this paper we incorporate a novel approach to synthesize a class of closed-loop feedback control, based on the variational structure assignment. Properties of a viscoelastic system are used to design an active feedback controller for an undamped structural system with distributed sensor, actuator and controller. Wave dispersion properties of onedimensional beam system have been studied. Efficiency of the chosen viscoelastic model in enhancing damping and stability properties of one-dimensional viscoelastic bar have been analyzed. The variational structure is projected on a solution space of a closed-loop system involving a weakly damped structure with distributed sensor and actuator with controller. These assign the phenomenology based internal strain rate damping parameter of a viscoelastic system to the usual elastic structure but with active control. In the formulation a model of cantilever beam with non-collocated actuator and sensor has been considered. The formulation leads to the matrix identification problem of two dynamic stiffness matrices. The method has been simplified to obtain control system gains for the free vibration control of a cantilever beam system with collocated actuator-sensor, using quadratic optimal control and pole-placement methods.
Resumo:
Using the recently developed model predictive static programming (MPSP), a suboptimal guidance logic is presented in this paper for formation flying of small satellites. Due to the inherent nature of the problem formulation, MPSP does not require the system dynamics to be linearized. The proposed guidance scheme is valid both for high eccentricity chief satellite orbits as well as large separation distance between chief and deputy satellites. Moreover, since MPSP poses the desired conditions as a set of `hard constraints', the final accuracy level achieved is very high. The proposed guidance scheme has been tested successfully for a variety of initial conditions and for a variety of formation commands as well. Comparison with standard Linear Quadratic Regulator (LQR) solution (which serves as a guess solution for MPSP) and another nonlinear controller, State Dependent Riccati Equation (SDRE) reveals that MPSP guidance achieves the objective with higher accuracy and with lesser amount of control usage as well.
Resumo:
This paper proposes a Single Network Adaptive Critic (SNAC) based Power System Stabilizer (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a Single Machine Infinite Bus test system for various system and loading conditions. The proposed stabilizer, which is relatively easier to synthesize, consistently outperformed stabilizers based on conventional lead-lag and linear quadratic regulator designs.
Resumo:
In this paper, the free vibration of a non-uniform free-free Euler-Bernoulli beam is studied using an inverse problem approach. It is found that the fourth-order governing differential equation for such beams possess a fundamental closed-form solution for certain polynomial variations of the mass and stiffness. An infinite number of non-uniform free-free beams exist, with different mass and stiffness variations, but sharing the same fundamental frequency. A detailed study is conducted for linear, quadratic and cubic variations of mass, and on how to pre-select the internal nodes such that the closed-form solutions exist for the three cases. A special case is also considered where, at the internal nodes, external elastic constraints are present. The derived results are provided as benchmark solutions for the validation of non-uniform free-free beam numerical codes. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the linear dynamics and active control of a string travelling with uniform velocity is presented. Discrete elastic supports are introduced along the length of the string. Finite element formulation is adopted to obtain the governing equations of motion. The velocity of translation introduces gyroscopic terms in the system equations. The effect of translation and the discrete elastic supports on the free vibration solution is studied. The solution is utilized in actively controlling the string vibrations due to an initial disturbance. The control, affected in modal space, is optimal with respect to a quadratic performance index. Numerical results are presented to demonstrate the effectiveness of the control strategy in regulating the travelling string vibrations.
Resumo:
A simple linear ramp control circuit, suitable for use with force-commutated thyrister circuits is discussed here. The circuit is based on only two IM 558 dual timer iCs, operating from a single 15 V supply. The reset terminals facilitate inhibition of the output of any stage. The use of this circuit in a thyristor chopper operating at 400 Hz 13 described.
Resumo:
The application of Gaussian Quadrature (GQ) procedures to the evaluation of i—E curves in linear sweep voltammetry is advocated. It is shown that a high degree of precision is achieved with these methods and the values obtained through GQ are in good agreement with (and even better than) the values reported in literature by Nicholson-Shain, for example. Another welcome feature with GQ is its ability to be interpreted as an elegant, efficient analytic approximation scheme too. A comparison of the values obtained by this approach and by a recent scheme based on series approximation proposed by Oldham is made and excellent agreement is shown to exist.