72 resultados para Input bias
em Indian Institute of Science - Bangalore - Índia
Resumo:
Technology scaling has caused Negative Bias Temperature Instability (NBTI) to emerge as a major circuit reliability concern. Simultaneously leakage power is becoming a greater fraction of the total power dissipated by logic circuits. As both NBTI and leakage power are highly dependent on vectors applied at the circuit’s inputs, they can be minimized by applying carefully chosen input vectors during periods when the circuit is in standby or idle mode. Unfortunately input vectors that minimize leakage power are not the ones that minimize NBTI degradation, so there is a need for a methodology to generate input vectors that minimize both of these variables.This paper proposes such a systematic methodology for the generation of input vectors which minimize leakage power under the constraint that NBTI degradation does not exceed a specified limit. These input vectors can be applied at the primary inputs of a circuit when it is in standby/idle mode and are such that the gates dissipate only a small amount of leakage power and also allow a large majority of the transistors on critical paths to be in the “recovery” phase of NBTI degradation. The advantage of this methodology is that allowing circuit designers to constrain NBTI degradation to below a specified limit enables tighter guardbanding, increasing performance. Our methodology guarantees that the generated input vector dissipates the least leakage power among all the input vectors that satisfy the degradation constraint. We formulate the problem as a zero-one integer linear program and show that this formulation produces input vectors whose leakage power is within 1% of a minimum leakage vector selected by a search algorithm and simultaneously reduces NBTI by about 5.75% of maximum circuit delay as compared to the worst case NBTI degradation. Our paper also proposes two new algorithms for the identification of circuit paths that are affected the most by NBTI degradation. The number of such paths identified by our algorithms are an order of magnitude fewer than previously proposed heuristics.
Resumo:
In this paper, we present a machine learning approach to measure the visual quality of JPEG-coded images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity (HVS) factors such as edge amplitude, edge length, background activity and background luminance. Image quality assessment involves estimating the functional relationship between HVS features and subjective test scores. The quality of the compressed images are obtained without referring to their original images ('No Reference' metric). Here, the problem of quality estimation is transformed to a classification problem and solved using extreme learning machine (ELM) algorithm. In ELM, the input weights and the bias values are randomly chosen and the output weights are analytically calculated. The generalization performance of the ELM algorithm for classification problems with imbalance in the number of samples per quality class depends critically on the input weights and the bias values. Hence, we propose two schemes, namely the k-fold selection scheme (KS-ELM) and the real-coded genetic algorithm (RCGA-ELM) to select the input weights and the bias values such that the generalization performance of the classifier is a maximum. Results indicate that the proposed schemes significantly improve the performance of ELM classifier under imbalance condition for image quality assessment. The experimental results prove that the estimated visual quality of the proposed RCGA-ELM emulates the mean opinion score very well. The experimental results are compared with the existing JPEG no-reference image quality metric and full-reference structural similarity image quality metric.
Resumo:
Conductance measurements of junctions between a high- superconductor and a metallic oxide have been carried out along the a-b plane to examine the tunnel-junction spectra. For these measurements, in situ films have been grown on c-axis oriented thin films using the pulsed laser deposition technique. Two distinctive energy gaps have been observed along with conductance peaks around zero bias. The analysis of zero-bias conductance and energy gap data suggests the presence of midgap states located at the centre of a finite energy gap. The results obtained are also in accordance with the d-wave nature of high- superconductors.
Resumo:
Polymerized carbon nanotubes (CNTs) are promising materials for polymer-based electronics and electro-mechanical sensors. The advantage of having a polymer nanolayer on CNTs widens the scope for functionalizing it in various ways for polymer electronic devices. However, in this paper, we show for the first time experimentally that, due to a resistive polymer layer having carbon nanoparticle inclusions and polymerized carbon nanotubes, an interesting dynamics can be exploited. We first show analytically that the relative change in the resistance of a single isolated semiconductive nanotube is directly proportional to the axial and torsional dynamic strains, when the strains are small, whereas, in polymerized CNTs, the viscoelasticity of the polymer and its effective electrical polarization give rise to nonlinear effects as a function of frequency and bias voltage. A simplified formula is derived to account for these effects and validated in the light of experimental results. CNT–polymer-based channels have been fabricated on a PZT substrate. Strain sensing performance of such a one-dimensional channel structure is reported. For a single frequency modulated sine pulse as input, which is common in elastic and acoustic wave-based diagnostics, imaging, microwave devices, energy harvesting, etc, the performance of the fabricated channel has been found to be promising.
Resumo:
Uniformity in bias tilt, for the polyvinyl alcohol(PVA)surface layer induced orientation of nematic liquid crystals, could be achieved for large area display panels, if one of the transparent electrodes is first directionally rubbed with fine abrasive; then both the electrodes coated with PVA, followed by directionally buffing the chemisorbed layers in the same direction. Uniformity may be due to increased 'train' configuration of the adsorbed macromolecule by falling on to microgrooves and maintaining the same sense of asymmetry for the looped segments.
Resumo:
Analogue and digital techniques for linearization of non-linear input-output relationship of transducers are briefly reviewed. The condition required for linearizing a non-linear function y = f(x) using a non-linear analogue-to-digital converter, is explained. A simple technique to construct a non-linear digital-to-analogue converter, based on ' segments of equal digital interval ' is described. The technique was used to build an N-DAC which can be employed in a successive approximation or counter-ramp type ADC to linearize the non-linear transfer function of a thermistor-resistor combination. The possibility of achieving an order of magnitude higher accuracy in the measurement of temperature is shown.
Resumo:
This paper is concerned with the development of an algorithm for pole placement in multi-input dynamic systems. The algorithm which uses a series of elementary transformations is believed to be simpler, computationally more efficient and numerically stable when compared with earlier methods. In this paper two methods have been presented.
Resumo:
This paper is concerned with the development of an algorithm for pole placement in multi-input dynamic systems. The algorithm which uses a series of elementary transformations is believed to be simpler, computationally more efficient and numerically stable when compared with earlier methods. In this paper two methods have been presented.
Resumo:
In this paper the response of a gyrostabilized platform subjected to a transient torque has been analyzed by deliberately introducing non-linearity into the command of the servomotor. The resulting third-order non-linear differential equation has been solved by using a transformation technique involving the displacement variable. The condition under which platform oscillations may grow with time or die with time are important from the point of view of platform stabilization. The effect of deliberate addition of non-linearity with a view to achieving the ideal response—that is, to bring the platform back to its equilibrium position with as few oscillations as possible—has been investigated. The conditions under which instability may set in on account of the small transient input and small non-linearity has also been discussed. The analysis is illustrated by means of a numerical example. The results of analysis are compared with numerical solutions obtained on a digital computer.
Resumo:
This paper reports the design of an input-triggered polymorphic ASIC for H.264 baseline decoder. Hardware polymorphism is achieved by selectively reusing hardware resources at system and module level. Complete design is done using ESL design tools following a methodology that maintains consistency in testing and verification throughout the design flow. The proposed design can support frame sizes from QCIF to 1080p.
Resumo:
We study the current produced in a Tomonaga-Luttinger liquid by an applied bias and by weak, pointlike impurity potentials which are oscillating in time. We use bosonization to perturbatively calculate the current up to second order in the impurity potentials. In the regime of small bias and low pumping frequency, both the dc and ac components of the current have power-law dependences on the bias and pumping frequencies with an exponent 2K-1 for spinless electrons, where K is the interaction parameter. For K < 1/2, the current grows large for special values of the bias. For noninteracting electrons with K=1, our results agree with those obtained using Floquet scattering theory for Dirac fermions. We also discuss the cases of extended impurities and of spin-1/2 electrons.
Resumo:
This paper proposes a control method that can balance the input currents of the three-phase three-wire boost rectifier under unbalanced input voltage condition. The control objective is to operate the rectifier in the high-power-factor mode under balanced input voltage condition but to give overriding priority to the current balance function in case of unbalance in the input voltage. The control structure has been divided into two major functional blocks. The inner loop current-mode controller implements resistor emulation to achieve high-power-factor operation on each of the two orthogonal axes of the stationary reference frame. The outer control loop performs magnitude scaling and phase-shifting operations on current of one of the axes to make it balanced with the current on the other axis. The coefficients of scaling and shifting functions are determined by two closed-loop prportional-integral (PI) controllers that impose the conditions of input current balance as PI references. The control algorithm is simple and high performing. It does not require input voltage sensing and transformation of the control variables into a rotating reference frame. The simulation results on a MATLAB-SIMULINK platform validate the proposed control strategy. In implementation Texas Instrument's digital signal processor TMS320F24OF is used as the digital controller. The control algorithm for high-power-factor operation is tested on a prototype boost rectifier under nominal and unbalanced input voltage conditions.
Resumo:
Results of measurements at a high frequency on reverse bias capacitance of copper-doped germanium junctions are reported. Phenomenal increase in capacitance is found in the breakdown region, particularly at low temperatures.
Resumo:
The transition time associated with the time-variation of the voltage across a two-terminal diaphragm-less solion in response to a step-current stimulus has been studied experimentally. A theoretical analysis has also been made by solving the diffusion problem under the appropriate initial and boundary conditions. The behaviour of the theoretically predicted transition times is in agreement with the observed behaviour. The systems under study have been shown to be different from those used hitherto in thin-layer chronopotentiometry.
Resumo:
The transition time associated with the time-variation of the voltage across a two-terminal diaphragm-less solion in response to a step-current stimulus has been studied experimentally. A theoretical analysis has also been made by solving the diffusion problem under the appropriate initial and boundary conditions. The behaviour of the theoretically predicted transition times is in agreement with the observed behaviour. The systems under study have been shown to be different from those used hitherto in thin-layer chronopotentiometry.