136 resultados para Application specific instruction-set processor
em Indian Institute of Science - Bangalore - Índia
Resumo:
ASICs offer the best realization of DSP algorithms in terms of performance, but the cost is prohibitive, especially when the volumes involved are low. However, if the architecture synthesis trajectory for such algorithms is such that the target architecture can be identified as an interconnection of elementary parameterized computational structures, then it is possible to attain a close match, both in terms of performance and power with respect to an ASIC, for any algorithmic parameters of the given algorithm. Such an architecture is weakly programmable (configurable) and can be viewed as an application specific instruction-set processor (ASIP). In this work, we present a methodology to synthesize ASIPs for DSP algorithms.
Resumo:
Emerging embedded applications are based on evolving standards (e.g., MPEG2/4, H.264/265, IEEE802.11a/b/g/n). Since most of these applications run on handheld devices, there is an increasing need for a single chip solution that can dynamically interoperate between different standards and their derivatives. In order to achieve high resource utilization and low power dissipation, we propose REDEFINE, a polymorphic ASIC in which specialized hardware units are replaced with basic hardware units that can create the same functionality by runtime re-composition. It is a ``future-proof'' custom hardware solution for multiple applications and their derivatives in a domain. In this article, we describe a compiler framework and supporting hardware comprising compute, storage, and communication resources. Applications described in high-level language (e.g., C) are compiled into application substructures. For each application substructure, a set of compute elements on the hardware are interconnected during runtime to form a pattern that closely matches the communication pattern of that particular application. The advantage is that the bounded CEs are neither processor cores nor logic elements as in FPGAs. Hence, REDEFINE offers the power and performance advantage of an ASIC and the hardware reconfigurability and programmability of that of an FPGA/instruction set processor. In addition, the hardware supports custom instruction pipelining. Existing instruction-set extensible processors determine a sequence of instructions that repeatedly occur within the application to create custom instructions at design time to speed up the execution of this sequence. We extend this scheme further, where a kernel is compiled into custom instructions that bear strong producer-consumer relationship (and not limited to frequently occurring sequences of instructions). Custom instructions, realized as hardware compositions effected at runtime, allow several instances of the same to be active in parallel. A key distinguishing factor in majority of the emerging embedded applications is stream processing. To reduce the overheads of data transfer between custom instructions, direct communication paths are employed among custom instructions. In this article, we present the overview of the hardware-aware compiler framework, which determines the NoC-aware schedule of transports of the data exchanged between the custom instructions on the interconnect. The results for the FFT kernel indicate a 25% reduction in the number of loads/stores, and throughput improves by log(n) for n-point FFT when compared to sequential implementation. Overall, REDEFINE offers flexibility and a runtime reconfigurability at the expense of 1.16x in power and 8x in area when compared to an ASIC. REDEFINE implementation consumes 0.1x the power of an FPGA implementation. In addition, the configuration overhead of the FPGA implementation is 1,000x more than that of REDEFINE.
Resumo:
CMPs enable simultaneous execution of multiple applications on the same platforms that share cache resources. Diversity in the cache access patterns of these simultaneously executing applications can potentially trigger inter-application interference, leading to cache pollution. Whereas a large cache can ameliorate this problem, the issues of larger power consumption with increasing cache size, amplified at sub-100nm technologies, makes this solution prohibitive. In this paper in order to address the issues relating to power-aware performance of caches, we propose a caching structure that addresses the following: 1. Definition of application-specific cache partitions as an aggregation of caching units (molecules). The parameters of each molecule namely size, associativity and line size are chosen so that the power consumed by it and access time are optimal for the given technology. 2. Application-Specific resizing of cache partitions with variable and adaptive associativity per cache line, way size and variable line size. 3. A replacement policy that is transparent to the partition in terms of size, heterogeneity in associativity and line size. Through simulation studies we establish the superiority of molecular cache (caches built as aggregations of molecules) that offers a 29% power advantage over that of an equivalently performing traditional cache.
Resumo:
Today's SoCs are complex designs with multiple embedded processors, memory subsystems, and application specific peripherals. The memory architecture of embedded SoCs strongly influences the power and performance of the entire system. Further, the memory subsystem constitutes a major part (typically up to 70%) of the silicon area for the current day SoC. In this article, we address the on-chip memory architecture exploration for DSP processors which are organized as multiple memory banks, where banks can be single/dual ported with non-uniform bank sizes. In this paper we propose two different methods for physical memory architecture exploration and identify the strengths and applicability of these methods in a systematic way. Both methods address the memory architecture exploration for a given target application by considering the application's data access characteristics and generates a set of Pareto-optimal design points that are interesting from a power, performance and VLSI area perspective. To the best of our knowledge, this is the first comprehensive work on memory space exploration at physical memory level that integrates data layout and memory exploration to address the system objectives from both hardware design and application software development perspective. Further we propose an automatic framework that explores the design space identifying 100's of Pareto-optimal design points within a few hours of running on a standard desktop configuration.
Resumo:
In this paper we present a framework for realizing arbitrary instruction set extensions (IE) that are identified post-silicon. The proposed framework has two components viz., an IE synthesis methodology and the architecture of a reconfigurable data-path for realization of the such IEs. The IE synthesis methodology ensures maximal utilization of resources on the reconfigurable data-path. In this context we present the techniques used to realize IEs for applications that demand high throughput or those that must process data streams. The reconfigurable hardware called HyperCell comprises a reconfigurable execution fabric. The fabric is a collection of interconnected compute units. A typical use case of HyperCell is where it acts as a co-processor with a host and accelerates execution of IEs that are defined post-silicon. We demonstrate the effectiveness of our approach by evaluating the performance of some well-known integer kernels that are realized as IEs on HyperCell. Our methodology for realizing IEs through HyperCells permits overlapping of potentially all memory transactions with computations. We show significant improvement in performance for streaming applications over general purpose processor based solutions, by fully pipelining the data-path. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this paper we explore an implementation of a high-throughput, streaming application on REDEFINE-v2, which is an enhancement of REDEFINE. REDEFINE is a polymorphic ASIC combining the flexibility of a programmable solution with the execution speed of an ASIC. In REDEFINE Compute Elements are arranged in an 8x8 grid connected via a Network on Chip (NoC) called RECONNECT, to realize the various macrofunctional blocks of an equivalent ASIC. For a 1024-FFT we carry out an application-architecture design space exploration by examining the various characterizations of Compute Elements in terms of the size of the instruction store. We further study the impact by using application specific, vectorized FUs. By setting up different partitions of the FFT algorithm for persistent execution on REDEFINE-v2, we derive the benefits of setting up pipelined execution for higher performance. The impact of the REDEFINE-v2 micro-architecture for any arbitrary N-point FFT (N > 4096) FFT is also analyzed. We report the various algorithm-architecture tradeoffs in terms of area and execution speed with that of an ASIC implementation. In addition we compare the performance gain with respect to a GPP.
Resumo:
ASICs offer the best realization of DSP algorithms in terms of performance, but the cost is prohibitive, especially when the volumes involved are low. However, if the architecture synthesis trajectory for such algorithms is such that the target architecture can be identified as an interconnection of elementary parameterized computational structures, then it is possible to attain a close match, both in terms of performance and power with respect to an ASIC, for any algorithmic parameters of the given algorithm. Such an architecture is weakly programmable (configurable) and can be viewed as an application specific integrated processor (ASIP). In this work, we present a methodology to synthesize ASIPs for DSP algorithms. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Large-grain synchronous dataflow graphs or multi-rate graphs have the distinct feature that the nodes of the dataflow graph fire at different rates. Such multi-rate large-grain dataflow graphs have been widely regarded as a powerful programming model for DSP applications. In this paper we propose a method to minimize buffer storage requirement in constructing rate-optimal compile-time (MBRO) schedules for multi-rate dataflow graphs. We demonstrate that the constraints to minimize buffer storage while executing at the optimal computation rate (i.e. the maximum possible computation rate without storage constraints) can be formulated as a unified linear programming problem in our framework. A novel feature of our method is that in constructing the rate-optimal schedule, it directly minimizes the memory requirement by choosing the schedule time of nodes appropriately. Lastly, a new circular-arc interval graph coloring algorithm has been proposed to further reduce the memory requirement by allowing buffer sharing among the arcs of the multi-rate dataflow graph. We have constructed an experimental testbed which implements our MBRO scheduling algorithm as well as (i) the widely used periodic admissible parallel schedules (also known as block schedules) proposed by Lee and Messerschmitt (IEEE Transactions on Computers, vol. 36, no. 1, 1987, pp. 24-35), (ii) the optimal scheduling buffer allocation (OSBA) algorithm of Ning and Gao (Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Charleston, SC, Jan. 10-13, 1993, pp. 29-42), and (iii) the multi-rate software pipelining (MRSP) algorithm (Govindarajan and Gao, in Proceedings of the 1993 International Conference on Application Specific Array Processors, Venice, Italy, Oct. 25-27, 1993, pp. 77-88). Schedules generated for a number of random dataflow graphs and for a set of DSP application programs using the different scheduling methods are compared. The experimental results have demonstrated a significant improvement (10-20%) in buffer requirements for the MBRO schedules compared to the schedules generated by the other three methods, without sacrificing the computation rate. The MBRO method also gives a 20% average improvement in computation rate compared to Lee's Block scheduling method.
Resumo:
Regular Expressions are generic representations for a string or a collection of strings. This paper focuses on implementation of a regular expression matching architecture on reconfigurable fabric like FPGA. We present a Nondeterministic Finite Automata based implementation with extended regular expression syntax set compared to previous approaches. We also describe a dynamically reconfigurable generic block that implements the supported regular expression syntax. This enables formation of the regular expression hardware by a simple cascade of generic blocks as well as a possibility for reconfiguring the generic blocks to change the regular expression being matched. Further,we have developed an HDL code generator to obtain the VHDL description of the hardware for any regular expression set. Our optimized regular expression engine achieves a throughput of 2.45 Gbps. Our dynamically reconfigurable regular expression engine achieves a throughput of 0.8 Gbps using 12 FPGA slices per generic block on Xilinx Virtex2Pro FPGA.
Resumo:
Scalable Networks on Chips (NoCs) are needed to match the ever-increasing communication demands of large-scale Multi-Processor Systems-on-chip (MPSoCs) for multi media communication applications. The heterogeneous nature of application specific on-chip cores along with the specific communication requirements among the cores calls for the design of application-specific NoCs for improved performance in terms of communication energy, latency, and throughput. In this work, we propose a methodology for the design of customized irregular networks-on-chip. The proposed method exploits a priori knowledge of the applications communication characteristic to generate an optimized network topology and corresponding routing tables.
Resumo:
Video decoders used in emerging applications need to be flexible to handle a large variety of video formats and deliver scalable performance to handle wide variations in workloads. In this paper we propose a unified software and hardware architecture for video decoding to achieve scalable performance with flexibility. The light weight processor tiles and the reconfigurable hardware tiles in our architecture enable software and hardware implementations to co-exist, while a programmable interconnect enables dynamic interconnection of the tiles. Our process network oriented compilation flow achieves realization agnostic application partitioning and enables seamless migration across uniprocessor, multi-processor, semi hardware and full hardware implementations of a video decoder. An application quality of service aware scheduler monitors and controls the operation of the entire system. We prove the concept through a prototype of the architecture on an off-the-shelf FPGA. The FPGA prototype shows a scaling in performance from QCIF to 1080p resolutions in four discrete steps. We also demonstrate that the reconfiguration time is short enough to allow migration from one configuration to the other without any frame loss.
Resumo:
The design and implementation of a complete gas sensor system for liquified petroleum gas (LPG) gas sensing are presented. The system consists of a SnO2 transducer, a lowcost heater, an application specific integrated circuit (ASIC) with front-end interface circuitry, and a microcontroller interface for data logging. The ASIC includes a relaxation-oscillator-based heater driver circuit that is capable of controlling the sensor operating temperature from 100degC to 425degC. The sensor readout circuit in the ASIC, which is based on the resistance to time conversion technique, has been designed to measure the gas sensor response over three orders of resistance change during its interaction with gases.
Resumo:
This paper reports the design of an input-triggered polymorphic ASIC for H.264 baseline decoder. Hardware polymorphism is achieved by selectively reusing hardware resources at system and module level. Complete design is done using ESL design tools following a methodology that maintains consistency in testing and verification throughout the design flow. The proposed design can support frame sizes from QCIF to 1080p.
Resumo:
Run-time interoperability between different applications based on H.264/AVC is an emerging need in networked infotainment, where media delivery must match the desired resolution and quality of the end terminals. In this paper, we describe the architecture and design of a polymorphic ASIC to support this. The H.264 decoding flow is partitioned into modules, such that the polymorphic ASIC meets the design goals of low-power, low-area, high flexibility, high throughput and fast interoperability between different profiles and levels of H.264. We demonstrate the idea with a multi-mode decoder that can decode baseline, main and high profile H.264 streams and can interoperate at run.time across these profiles. The decoder is capable of processing frame sizes of up to 1024 times 768 at 30 fps. The design synthesized with UMC 0.13 mum technology, occupies 250 k gates and runs at 100 MHz.