83 resultados para Ablation
em Indian Institute of Science - Bangalore - Índia
Resumo:
Polycrystalline films of SrBi2Nb2O9 were grown using pulsed-laser ablation. The ferroelectric properties were achieved by low-temperature deposition followed by a subsequent annealing process. The lower switching voltage was obtained by lowering the thickness, which did not affect the insulating nature of the films. The hysteresis results showed an excellent square-shaped loop with results (P-r=6 mu C/cm(2), E-c=100 kV/cm) in good agreement with earlier reports. The films also exhibited a dielectric constant of 250 and a dissipation factor of 0.02. The transport studies indicated an ohmic behavior, while higher voltages induced a bulk space charge.
Resumo:
Antiferroelectric lead zirconate (PZ) thin films were deposited by pulsed laser ablation on platinum-coated silicon substrates. Films showed a polycrystalline pervoskite structure upon annealing at 650 degrees C for 5-10 min. Dielectric properties were investigated as a function of temperature and frequency. The dielectric constant of PZ films was 220 at 100 kHz with a dissipation factor of 0.03. The electric field induced transformation from the antiferroelectric phase to the ferroelectric phase was observed through the polarization change, using a Sawyer-Tower circuit. The maximum polarization value obtained was 40 mu C/cm(2). The average fields to excite the ferroelectric state, and to reverse to the antiferroelectric state were 71 and 140 kV/cm, respectively. The field induced switching was also observed through double maxima in capacitance-voltage characteristics. Leakage current was studied in terms of current versus time and current versus voltage measurements. A leakage current density of 5x10(-7) A/cm(2) at 3 V, for a film of 0.7 mu m thickness, was noted at room temperature. The trap mechanism was investigated in detail in lead zirconate thin films based upon a space charge limited conduction mechanism. The films showed a backward switching time of less than 90 ns at room temperature.
Resumo:
Permalloy (NiFeMo) nanoparticles were fabricated by laser ablation of bulk material in water with a UV pulsed laser. Transmission electron microscope images showed that approximately spherical particles about 50 nm in diameter were formed in the ablation process. All diffraction peaks corresponding to the bulk material were present in the nanoparticles. In addition to these peaks several new peaks were observed in the nanoparticles, which were attributed to nickel oxide.
Resumo:
A systematic study of Ar ion implantation in cupric oxide films has been reported. Oriented CuO films were deposited by pulsed excimer laser ablation technique on (1 0 0) YSZ substrates. X-ray diffraction (XRD) spectra showed the highly oriented nature of the deposited CuO films. The films were subjected to ion bombardment for studies of damage formation, Implantations were carried out using 100 keV Arf over a dose range between 5 x 10(12) and 5 x 10(15) ions/cm(2). The as-deposited and ion beam processed samples were characterized by XRD technique and resistance versus temperature (R-T) measurements. The activation energies for electrical conduction were found from In [R] versus 1/T curves. Defects play an important role in the conduction mechanism in the implanted samples. The conductivity of the film increases, and the corresponding activation energy decreases with respect to the dose value.
Resumo:
Ex-situ grown thin films of SrBi2Nb2O9 (SBN) were deposited on platinum substrates using laser ablation technique. A low substrate-temperature-processing route was chosen to avoid any diffusion of bismuth into the Pt electrode. It was observed that the as grown films showed an oriented growth along the 'c'-axis (with zero spontaneous polarization). The as grown films were subsequently annealed to enhance crystallization. Upon annealing, these films transformed into a polycrystalline structure, and exhibited excellent ferroelectric properties. The switching was made to be possible by lowering the thickness without losing the electrically insulating behavior of the films. The hysteresis results showed an excellent square-shaped loop with results (P-r = 4 muC/cm(2) E-c = 90 kV/cm) in good agreement with the earlier reports. The films also exhibited a dielectric constant of 190 and a dissipation factor of 0.02, which showed dispersion at low frequencies. The frequency dispersion was found to obey Jonscher's universal power law relation, and was attributed to the ionic charge hopping process according to earlier reports. The de transport studies indicated an ohmic behavior in the low voltage region, while higher voltages induced a bulk space charge and resulted in non-linear current-voltage dependence.
Resumo:
Li-doped ZnO thin films (Zn1-xLixO, x=0.05-0.15) were grown by pulsed-laser ablation technique. Highly c-axis-oriented films were obtained at a growth temperature of 500 degrees C. Ferroelectricity in Zn1-xLixO was found from the temperature-dependent dielectric constant and from the polarization hysteresis loop. The transition temperature (T-c) varied from 290 to 330 K as the Li concentration increased from 0.05 to 0.15. It was found that the maximum value of the dielectric constant at T-c is a function of Li concentration. A symmetric increase in memory window with the applied gate voltage is observed for the ferroelectric thin films on a p-type Si substrate. A ferroelectric P-E hysteresis loop was observed for all the compositions. The spontaneous polarization (P-s) and coercive field (E-c) of 0.6 mu C/cm(2) and 45 kV/cm were obtained for Zn0.85Li0.15O thin films. These observations reveal that partial replacement of host Zn by Li ions induces a ferroelectric phase in the wurtzite-ZnO semiconductor. The dc transport studies revealed an Ohmic behavior in the lower-voltage region and space-charge-limited conduction prevailed at higher voltages. The optical constants were evaluated from the transmission spectrum and it was found that Li substitution in ZnO enhances the dielectric constant.
Resumo:
Lead Zirconate (PbZrO3) thin films were deposited by pulsed laser ablation method. Pseudocubic (110) oriented in-situ films were grown at low pressure. The field enforced anti-ferroelectric (AFE) to ferroelectric (FE) phase transformation behaviour was investigated by means of a modified Sawyer Tower circuit as well as capacitance versus applied voltage measurements. The maximum polarisation obtained was 36 mu C cm(-2) and the critical field to induce ferroelectric state and to reverse the antiferroelectric slates were 65 and 90 kV cm(-1) respectively. The dielectric properties were investigated as a function of frequency and temperature. The dielectric constant of the AFE lead zirconate thin him was 190 at 100 kHz which is more than the bulk ceramic value (120) with a dissipation factor of less than 0.07. The polarisation switching kinetics of the antiferroelectric PbZrO3 thin films showed that the switching time to be around 275 ns between antipolar state to polar states. (C) 1999 Elsevier Science S.A. All rights reserved.
Electrical characterization of Ba(Zr0.1Ti0.9)O-3 thin films grown by pulsed laser ablation technique
Resumo:
In situ annealed thin films of ferroelectric Ba(Zr0.1Ti0.9)O-3 were deposited on platinum substrates by pulsed laser ablation technique. The as grown films were polycrystalline in nature without the evidence of any secondary phases. The polarization hysteresis loop confirmed the ferroelectricity, which was also cross-checked with the capacitance-voltage characteristics. The remnant polarization was about 5.9 muC cm(-2) at room temperature and the coercive field was 45 kV. There was a slight asymmetry in the hysteresis for different polarities, which was thought to be due to the work function differences of different electrodes. The dielectric constant was about 452 and was found to exhibit low frequency dispersion that increased with frequency, This was related to the space-charge polarization. The complex impedance was plotted and this exhibited a semicircular trace, and indicated an equivalent parallel R - C circuit within the sample. This was attributed to the grain response. The DC leakage current-voltage plot was consistent with the space-charge limited conduction theory, but showed some deviation, which was explained by assuming a Poole-Frenkel type conduction to be superimposed on to the usual space-charge controlled current. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Encapsulated and hollow closed-cage onion-like structures of WS2 and MoS2 were prepared by laser ablation of the corresponding layered structures in argon atmosphere at four varied temperatures. A detailed study for WS2 indicates that only metal-filled onion-like structures are produced at temperatures Tless-than-or-equals, slant650°C, whereas a mixture of metal-filled and hollow structures are produced at Tgreater-or-equal, slanted850°C. The encapsulated metal is identified to be predominantly the metastable β phase of tungsten. Very short tube-like or elongated polyhedral structures are also obtained at high temperatures.
Resumo:
Films with Fe–25 at.% Ge composition are deposited by the process of laser ablation on single crystal NaCl and Cu substrates at room temperature. Both the vapor and liquid droplets generated in this process are quenched on the substrate. The microstructures of the embedded droplets show size as well as composition dependence. The hierarchy of phase evolution from amorphous to body-centered cubic (bcc) to DO3 has been observed as a function of size. Some of the medium-sized droplets also show direct formation of ordered DO19 phase from the starting liquid. The evolution of disordered bcc structure in some of the droplets indicates disorder trapping during liquid to solid transformation. The microstructural evolution is analyzed on the basis of heat transfer mechanisms and continuous growth model in the solidifying droplets.
Resumo:
Thin films of BaZrO3 (BZ) were grown using a pulsed laser deposition technique on platinum coated silicon substrates. Films showed a polycrystalline perovskite structure upon different annealing procedures of in-situ and ex-situ crystallization. The composition analyses were done using Energy dispersive X-ray analysis (EDAX) and Secondary ion mass spectrometry (SIMS). The SIMS analysis revealed that the ZrO2 formation at the right interface of substrate and the film leads the degradation of the device on the electrical properties in the case of ex-situ crystallized films. But the in-situ films exhibited no interfacial formation. The dielectric properties have been studied for the different temperatures in the frequency regime of 40 Hz to 100kHz. The response of the film to external ac stimuli was studied at different temperatures, and it showed that ac conductivity values in the limiting case are correspond to oxygen vacancy motion. The electrical modulus is fitted to a stretched exponential function and the results clearly indicate the presence of the non-Debye type of dielectric relaxation in these materials.
Resumo:
Polycrystalline films of SrBi2Nb2O9 were grown using pulsed-laser ablation. The ferroelectric properties were achieved by low-temperature deposition followed by a subsequent annealing process. The lower switching voltage was obtained by lowering the thickness, which did not affect the insulating nature of the films. The hysteresis results showed an excellent square-shaped loop with results (Pr = 6 μC/cm2, Ec = 100 kV/cm) in good agreement with earlier reports. The films also exhibited a dielectric constant of 250 and a dissipation factor of 0.02. The transport studies indicated an ohmic behavior, while higher voltages induced a bulk space charge.
Resumo:
Thin films of Ti62.5Si37.5 composition were deposited by the pulsed-laser ablation technique on single-crystal Nad substrates at room temperature and on ′single-crystal′ superalloy substrates at elevated temperatures. Both vapour and liquid droplets generated by pulsed-laser ablation of the target become quenched on the substrate. Amorphization had taken place in the process of quenching of vapour-plasma as well as small liquid droplets on NaCl substrates at room temperature. In addition to the formation of Ti5Si3, a metastable fcc phase (a 0 = 0.433 nm) also forms in micron-sized large droplets as well as in the medium-sized submicron droplets. The same metastable fcc phase nucleates during deposition from the vapour state at 500°C and at 600°C on a superalloy substrate as well as during crystallization of the amorphous phase. The evolution of the metastable fcc phase in the Ti-Si system during non-equilibrium processing is reported for the first time.
Resumo:
Thin films of (1-x)Pb(Mg1/3Nb2/3)O-3 - xPbTiO(3) (x = 0.1 to 0.3)(PMN-PT) were deposited on the platinum coated silicon substrate by pulsed excimer laser ablation technique. A template layer of LaSr0.5Co0.5O3 (LSCO) was deposited on platinum substrate prior to the deposition of PMN-PT thin films. The composition and the structure of the films were modulated via proper variation of the deposition parameter such as substrate temperature, laser fluence and thickness of the template layers. We observed the impact of the thickness of LSCO template layer on the orientation of the films. A room temperature dielectric constant varying from 2000 to 4500 was noted for different composition of the films. The dielectric properties of the films were studied over the frequency range of 100 Hz - 100 kHz over a wide range of temperatures. The films exhibited the relaxor- type behavior that was characterized by the frequency dispersion of the temperature of dielectric constant maxima (T-m) and also diffuse phase transition. C1 Indian Inst Sci, Mat Res Ctr, Bangalore, Karnataka 560012 India.
Resumo:
The paper reports the synthesis of Nb/Si multilayers (48/27 nm) deposited on Si single crystal substrate by sequential laser ablation of elemental Nb and Si. Significant amount of Nb is found in the amorphous Si layer (similar to 25-35 at.% Nb). The Nb layer is found to be polycrystalline. The phase evolution of the multilayer has been studied by annealing at 600 degrees C for various times and carrying out cross sectional electron microscopic studies. We report the formation of amorphous silicide layer at the Nb/Si interface followed by the formation of the NbSi2 phase in the Si layer. Further annealing leads to the nucleation of hexagonal Nb5Si3 grains in amorphous silicide layers at Nb/NbSi2 interfaces. These results are different from those reported for sputter deposited multilayer. (C) 2013 Elsevier B. V. All rights reserved.