307 resultados para POTASSIUM-ION
Resumo:
Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.
Resumo:
Nanocrystalline Li4Ti5O12 (LTO) crystallizing in cubic spinel-phase has been synthesized by single-step-solution-combustion method in less than one minute. LTO particles thus synthesized are flaky and highly porous in nature with a surface area of 12 m(2)/g. Transmission electron micrographs indicate the primary particles to be agglomerated crystallites of varying size between 20 and 50 nm with a 3-dimensional interconnected porous network. During their galvanostatic charge-discharge at varying rates, LTO electrodes yield a capacity value close to the theoretical value of 175 mA h/g at C/2 rate. The electrodes also exhibit promising capacity retention with little capacity loss over 100 cycles at varying discharge rates together with attractive discharge-rate capabilities yielding capacity values of 140 mA h/g and 70 mA h/g at 10 and 100 C discharge rates, respectively. The ameliorated electrode-performance is ascribed to nano and highly porous morphology of the electrodes that provide short diffusion-paths for Li in conjunction with electrolyte percolation through the electrode pores ensuring a high flux of Li.
Resumo:
A number of AgI based fast ion conducting glasses, with a general formula AgI---Ag2O---MxOy (MxOy=MoO3, SeO3, WO3, V2O5, P2O5, GeO2, B2O3, As2O3, CrO3) have been studied. A chemical approach is made to investigate the origin of fast ion conduction in these glasses. An index known as Image tructural Image npinning Image umber, SUN (S), has been defined for the purpose, based on the unscreened nuclear charge of silver ions and the equilibrium lectronegativities of the halide-oxyanion matrix in these glasses. The variation of the glass transition temperature, Tg, conductivity, σ, and the energy of activation, Ea, with the concentration of AgI are discussed in the light of the structural unpinning number. Conductivities increase uniformly in any given glass series as a smooth function of S and level off at very high values. The entire range of conductivity appears to vary as ln Image , where ln σ0 corresponds roughly to the conductivity of the hypothetical AgI glass and “a” is a constant which could be obtained as the slope in the graph of ln Ea versus S. It is suggested that the increase in the concentration of AgI beyond 75–80 mole% in the glass is not advantageous from the conductivity point of view.
Resumo:
A microscopic theory of equilibrium solvation and solvation dynamics of a classical, polar, solute molecule in dipolar solvent is presented. Density functional theory is used to explicitly calculate the polarization structure around a solvated ion. The calculated solvent polarization structure is different from the continuum model prediction in several respects. The value of the polarization at the surface of the ion is less than the continuum value. The solvent polarization also exhibits small oscillations in space near the ion. We show that, under certain approximations, our linear equilibrium theory reduces to the nonlocal electrostatic theory, with the dielectric function (c(k)) of the liquid now wave vector (k) dependent. It is further shown that the nonlocal electrostatic estimate of solvation energy, with a microscopic c(k), is close to the estimate of linearized equilibrium theories of polar liquids. The study of solvation dynamics is based on a generalized Smoluchowski equation with a mean-field force term to take into account the effects of intermolecular interactions. This study incorporates the local distortion of the solvent structure near the ion and also the effects of the translational modes of the solvent molecules.The latter contribution, if significant, can considerably accelerate the relaxation of solvent polarization and can even give rise to a long time decay that agrees with the continuum model prediction. The significance of these results is discussed.
Resumo:
Silver iodide-based fast ion conducting glasses containing silver phosphate and silver borate have been studied. An attempt is made to identify the interaction between anions by studying the chemical shifts of31P and11B atoms in high resolution (HR) magic angle spinning (MAS) NMR spectra. Variation in the chemical shifts of31P or11B has been observed which is attributed to the change in the partial charge on the31P or11B. This is indicative of the change in the electronegativity of the anion matrix as a whole. This in turn is interpreted as due to significant interaction among anions. The significance of such interaction to the concept of structural unpinning of silver ions in fast ion conducting glasses is discussed.
Resumo:
The interactions of lithium perchlorate with ligands such as dimethyl sulphoxide, acetonitrile, pyridine and the Schiff base liquid crystals are investigated. The experiments open a new field for the study of metal-ion-ligand interactions in thermotropic liquid crystals.
Resumo:
The potassium salt of 3-methoxy and 3,5-dimethoxy benzoic acids undergoes deprotonation at the position para to the carboxylate group selectively when treated with LIC-KOR in THF at -78 degrees C and it has been extended to the synthesis of 3,5-dimethoxy-4-methyl benzoic acid. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Theoretical expressions for the time-dependent solvation energy of an ion and of a dipole in a dense dipolar liquid are derived from microscopic considerations. We show that in contradiction to the prediction of the continuum models, the dynamics of these two species are significantly different from each other. Especially, the zero wavevector contribution, which is significant for ions, is totally absent for dipoles. Dipolar solvation may be profoundly influenced by the translational modes of the host solvent.
Surface modifications in single crystal surfaces of YBa2Cu3O7-delta upon high energy ion irradiation
Resumo:
Atomic force microscopy investigations on swift heavy ion (200 MeV An) irradiated surfaces of a high T-c single crystal YBa2Cu3O7-delta are presented. Results obtained revealed an ion-induced erosion/sputtering clearly confirming our earlier observation on grain boundary dominated thin films. Apart from sputtering, notable effects were seen with many defect structures like dikes/hillocks surrounded by craters, dikes, holes, pearl like structures and ripple formation of sub-micron undulations, all in one crystal. Results are discussed in the light of co-operative phenomena of material re-distribution mechanism related to mass transfer and crater formations.
Resumo:
A compact, high brightness 13.56 MHz inductively coupled plasma ion source without any axial or radial multicusp magnetic fields is designed for the production of a focused ion beam. Argon ion current of density more than 30 mA/cm(2) at 4 kV potential is extracted from this ion source and is characterized by measuring the ion energy spread and brightness. Ion energy spread is measured by a variable-focusing retarding field energy analyzer that minimizes the errors due t divergence of ion beam inside the analyzer. Brightness of the ion beam is determined from the emittance measured by a fully automated and locally developed electrostatic sweep scanner. By optimizing various ion source parameters such as RF power, gas pressure and Faraday shield, ion beams with energy spread of less than 5 eV and brightness of 7100 Am(-2)sr(-1)eV(-1) have been produced. Here, we briefly report the details of the ion source, measurement and optimization of energy spread and brightness of the ion beam. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
New protonated layered oxides, HMWO6·1.5H2O (M=Nb or Ta), have been synthesized by topotactic exchange of lithium in trirutile LiMWO6 with protons by treatment with dilute HNO3. The tetragonal cell constants are a=4.71 (2) and c=25.70 (8)Å for HNbWO6·1.5H2O and a=4.70 (2) and c=25.75 (9) Å for HTaWO6·1.5H2O. Partially hydrated compounds, HMWO6·0.5H2O and anhydrous compounds, HMWO6 retain the layered structure. The structure of these oxides consists of MWO6 sheets built up of M/W-oxygen octahedra with rutile type corner- and edge-sharing. Interlayer protons in HMWO6 are exchanged with Li+, Na+, K+ and Tl+. HMWO6 exhibit Brønsted acidity intercalating n-alkylamines and pyridine.
Resumo:
A.C. electrical conductivity of potassium perchlorate (KP) has been measured in the temperature range 25�325°C at frequencies ranging from 50�500 Hz using an automated technique. The results are interpreted in terms of a novel mechanism involving Schottky defects in the anion sublattice and Frenkel defects in the cation sublattice. Theconductivity behavior of KP is compared with literature data on similar low-symmetry systems containing polyatomic ions.
Resumo:
In this study we present approximate analytical expressions for estimating the variation in multipole expansion coefficients as a function of the size of the apertures in the electrodes in axially symmetric (3D) and two-dimensional (2D) ion trap ion traps. Following the approach adopted in our earlier studies which focused on the role of apertures to fields within the traps, here too, the analytical expression we develop is a sum of two terms, A(n,noAperiure), the multipole expansion coefficient for a trap with no apertures and A(n,dueToAperture), the multipole expansion coefficient contributed by the aperture. A(n,noAperture) has been obtained numerically and A(n,dueToAperture) is obtained from the n th derivative of the potential within the trap. The expressions derived have been tested on two 3D geometries and two 2D geometries. These include the quadrupole ion trap (QIT) and the cylindrical ion trap (CIT) for 3D geometries and the linear ion trap (LIT) and the rectilinear ion trap (RIT) for the 2D geometries. Multipole expansion coefficients A(2) to A(12), estimated by our analytical expressions, were compared with the values obtained numerically (using the boundary element method) for aperture sizes varying up to 50% of the trap dimension. In all the plots presented, it is observed that our analytical expression for the variation of multipole expansion coefficients versus aperture size closely follows the trend of the numerical evaluations for the range of aperture sizes considered. The maximum relative percentage errors, which provide an estimate of the deviation of our values from those obtained numerically for each multipole expansion coefficient, are seen to be largely in the range of 10-15%. The leading multipole expansion coefficient, A(2), however, is seen to be estimated very well by our expressions, with most values being within 1% of the numerically determined values, with larger deviations seen for the QIT and the LIT for large aperture sizes. (C) 2010 Elsevier B.V. All rights reserved.