135 resultados para METAL-ORGANIC FRAMEWORKS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface-enhanced Raman scattering (SERS) of pyridine adsorbed on ultrathin nanocrystalline Au and Ag films generated at the liquid-liquid interface has been investigated. The shifts and intensification of bands formed with these films comprising metal nanoparticles are comparable to those found with other types of Au and Ag substrates. SERS of rhodamine 6G adsorbed on Ag films has also been studied. The results demonstrate that nanocrystalline metal films prepared by the simple method involving the organic-aqueous interface can be used effectively for SERS investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method for the construction of carboncarbon bonds is described in which anions obtained by the metal-ammonia reduction of benzoic acid and its derivatives undergo ready Michael reaction with methyl crotonate to give the addition products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Birch reduction and reductive methylations of the title compounds have been investigated. 7-Methoxy-3,4-dihydrophenanthren-1(2H)-one (2) yields the cis-3,4,9,10,11,12-hexahydro-derivative (15) while the 7-methoxy-1,2-dihydrophenanthren-4(3H)-one (5) is reduced to the corresponding 1,2,9,10-tetrahydro-derivative (7). The factors influencing the mechanism of the reduction process have been discussed. The reductive methylation products of the ketone (2) are useful substrates in the synthesis of 9-methyl steroids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition metals catalyse a variety of organic reactions, of which the ring opening of strained ring organic molecules generated a lot of interest. Theoreticians predicted a metal orbital catalysed pathway, which involved concerted bond breaking and bond forming. On the other hand experimentalists were able to show that the reaction was not proceeding through a concerted pathway by intercepting the intermediates involved. There remained, however, two ring systems methylenecyclopropanes and cyclobutenes—whose reactions with metal complexes seemed to be of a concerted nature. An analysis of the reactions of different metal complexes with these ring systems and the theoretical predictions provide a rationale for understanding these reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several metal complexes of three different functionalized salen derivatives have been synthesized. The salens differ in terms of the electrostatic character and the location of the charges. The interactions of such complexes with DNA were first investigated in detail by UV−vis absorption titrimetry. It appears that the DNA binding by most of these compounds is primarily due to a combination of electrostatic and other modes of interactions. The melting temperatures of DNA in the presence of various metal complexes were higher than that of the pure DNA. The presence of additional charge on the central metal ion core in the complex, however, alters the nature of binding. Bis-cationic salen complexes containing central Ni(II) or Mn(III) were found to induce DNA strand scission, especially in the presence of co-oxidant as revealed by plasmid DNA cleavage assay and also on the basis of the autoradiogram obtained from their respective high-resolution sequencing gels. Modest base selectivity was observed in the DNA cleavage reactions. Comparisons of the linearized and supercoiled forms of DNA in the metal complex-mediated cleavage reactions reveal that the supercoiled forms are more susceptible to DNA scission. Under suitable conditions, the DNA cleavage reactions can be induced either by preformed metal complexes or by in situ complexation of the ligand in the presence of the appropriate metal ion. Also revealed was the fact that the analogous complexes containing Cu(II) or Cr(III) did not effect any DNA strand scission under comparable conditions. Salens with pendant negative charges on either side of the precursor salicylaldehyde or ethylenediamine fragments did not bind with DNA. Similarly, metallosalen complexes with net anionic character also failed to induce any DNA modification activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of double-stranded-DNA binding have been performed with three isomeric bis)2-(n-pyridyl)-1H-benzimidazole)s (n = 2, 3, 4). Like the well-known Hoechst 33258, which is a bisbenzimidazole compound, these three isomers bind to the minor groove of duplex DNA. DNA binding by the three isomers was investigated in the presence of the divalent metal ions Mg2+, Co2+, Ni2+, Cu2+, and Zn2+. Ligand-DNA interactions were probed with fluorscence and circular dichroism spectroscopy. These studies revealed that the binding of the 2-pyridyl derivative to DNA is dramatically reduced in the presence of Co2+, Ni2+, and Cu2+ ions and is abolished completely at a ligand/metal-cation ratio of 1:1. Control experiments done with the isomeric 3- and 4-pyridyl derivatives showed that their binding to DNA is unaffected by the aforementioned transition-metal ions. The ability of 2-(2-pyridyl)benzimidazole changes of the ligand associated with ion chelation probably ledto such unusual binding results for the ortho isomer. The addition of ethylenediaminetetraacetic acid (EDTA) reversed the effects completely.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the design and development of a thermoelectric gas sensor suitable for the detection of Volatile Organic Compounds (VOCs). In order to enhance the seebeck coefficient of the sensor, we have deposited chromium metal films on a limited area of the glass substrate. Tin oxide thin film was deposited on top of these metal films. The resulting metal/semiconductor film exhibits a high seebeck coefficient of 400 mu V/ degrees C. Platinum catalyst film deposited on the oxide film to create the necessary temperature gradient resulted in further enhancement in the sensitivity of the sensor to target gases. The sensor shows high sensitivity to ppm-change in the concentration of target hydrocarbons at a relatively low temperature of 120 degrees C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidation of representative halophenols and halonaphthols by peroxidisulphate has been examined. The influence of metallic ions, viz. Cu2+, Fe3+, Ag+, on the above reaction has been studied. Cu2+ ion-catalyzed oxidation gives halo-1, 4-quinones in excellent yield. Potassium bis(biureto)cuprate(III) complex also oxidises halophenols to halo-1, 4-quinones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction of cadmium sulfate in the presence of polyazaheterocyclic organic molecules gave rise to a variety of new cadmium sulfate phases in water containing solvothermal reaction. The compounds have two- (I) and three-dimensionally (II-VI) extended structures. All the compounds have structures built up by the connectivity involving the cadmium octahedra and the sulfate tetrahedra in which the heterocyclic organic molecules act as the ligand. The linkages between the Cd2+ and (SO4)2- ions form one- (II), two- (I, III, and IV), and three- (V and VI) dimensionally extended cadmium sulfate phases. The connectivity between Cd2+ ion and the heterocyclic ligand also gives rise to one- and two-dimensional structures. The inter-connectivity between the two units gives rise to the observed structures. The presence of Cd-O-Cd chains and Cd-O-Cd layers in some of the structures is noteworthy. The adsorption/desorption studies suggest that the cadmium sulfate phases adsorb/desorb anionic dyes selectively in the presence of water/ethanol, respectively. The photocatalytic degradation studies on cationic dyes under UV-irradiation indicate modest activity. The cyanosilylation of imines using the present compounds as heterogeneous catalyst indicate good catalytic behavior. The various properties exhibited by the cadmium sulfate phases suggest that these compounds are versatile. All the compounds were characterized by powder X-ray diffraction, thermogravimetric analysis, infrared (IR) and UV-visible studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ab initio MO calculations are performed on a series of ion-molecular and ion pair-molecular complexes of H2O + MX (MX = LiF, LiCl, NaCl, BeO and MgO) systems. BSSE-corrected stabilization energies, optimized geometrical parameters, internal force constants and harmonic vibrational frequencies have been evaluated for all the structures of interest. The trends observed in the geometrical parameters and other properties calculated for the mono-hydrated contact ion pair complexes parallel those computed for the complexes of the individual ions. The bifurcated structures are found to be saddle points with an imaginary frequency corresponding to the rocking mode of water molecules. The solvent-shared ion pair complexes have high interaction energies. Trends in the internal force constant and harmonic frequency values are discussed in terms of ion-molecular and ion-pair molecular interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Factors contributing to the variations in the Cu(I)-Cu(I) distances in two clusters with identical ligand and coordination geometries have been analyzed. While the hexamer, 4, exhibits metal-metal distances in the range 2.81-3.25 Angstrom, shorter contacts are found in the corresponding tetramer, 3 (2.60-2.77 Angstrom). EHT calculations reveal relatively little attractive interactions in the corresponding Cu-4(4+) and Cu-6(6+) cores. Introduction of the ligands lowers the reduced overlap populations between the metals further. MNDO calculations with model electrophiles have been carried out to determine the bite angle requirements of the ligands. These are satisfactorily met in the structures of both 3 and 4. The key geometric feature distinguishing 3 and 4 is the Cu-S-Cu angle involving the bridging S- unit. In 4, the corresponding angles are about 90 degrees, while the values in 3 are smaller (70-73 degrees). Wider angles are computed to be energetically favored and are characterized by an open three-center bond and a long Cu-Cu distance. The bridging angles are suggested to be primarily constrained by the mode of oligomerization. Implications of these results for the stability and reactivity of these clusters and for short metal-metal distances in d(10) systems in general are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Layered lanthanide sulfate compounds with three different structures have been prepared and characterized. The compounds C10H10N2] La(SO4)(2)]center dot 2H(2)O (I), C10H10N2] La(SO4)(2)(H2O)(2)](2) (Ha), C10H10N2]Pr(SO4)(2)(H2O)(2)](2) (IIb), C10H10N2]Nd-2(SO4)(4)(H2O)(2)](2) (IIIa), C10H10N2]Sm-2(SO4)(4)(H2O)(2)](2) (IIIb), and C10H10N2]Eu-2(SO4)(4)(H2O)(2)] 2 (IIIC) have anionic lanthanide sulfate layers separated by protonated bipyridine molecules. The layers are formed by the connectivity between the lanthanide polyhedra and sulfate tetrahedra. The formation of a two-dimensional La-O-La layer (la), Pr-O-Pr chains (IIb), and a tetramer cluster (IIIa) is noteworthy. The compounds exhibit honeycomb (I), square (IIa, IIb), and honeycomb (IIIa-IIIc) net arrangements, when the connectivity between the lanthanide ions is considered. Optical studies indicate the observation of characteristic metal-centered emission at room temperature. The Nd compound (IIIa) exhibits a two-photon upconversion behavior.