693 resultados para Instrumentation.
Resumo:
Bread undergoes several physicochemical changes during storage that results in a rapid loss of freshness. These changes depend on moisture content present in bread product. An instrument based on electrical impedance spectroscopy technique is developed to estimate moisture content of bread at different zones using designed multi-channel ring electrodes. A dedicated AT89S52 microcontroller and associated peripherals are employed for hardware. A constant current is applied across bread loaf through central pair of electrodes and developed potential across different zones of bread loaf are measured using remaining four ring electrode pairs. These measured values of voltage and current are used to measure the impedance at each zone. Electrical impedance behavior of the bread loaf at crust and crumb is investigated during storage. A linear relationship is observed between the measured impedance and moisture content present in crust and crumb of bread loaf during storage of 120 hours.
Resumo:
Pressure dependence of the electrical resistivity of bulk, melt quenched GexTe100−x glasses (15 less-than-or-equals, slant x less-than-or-equals, slant 28) has been studied up to 8GPa pressure. All the glasses exhibit a sharp, discontinuous glass to crystal transition under pressure. The high pressure crystalline phases are identified to have a face centered cubic structure. The value of the cell constant is 0.779nm for 15 less-than-or-equals, slant x less-than-or-equals, slant 17, 0.642nm for x=20 and 0.55lnm for 22 ≤ x ≤ 28 samples respectively. The cell constants of the high pressure crystalline phases suggest the possible existance of a new metastable crystalline compound in the Ge---Te system with F.C.C. structure and cell constant equal to 1.109nm as reported by Moore et al.
Resumo:
The specific objective of this paper is to develop multiloop controllers that would achieve asymptotic regulation in the presence of parameter variations and disturbance inputs for a tubular reactor used in ammonia synthesis. The dynamic model considered here has nine state variables, two control inputs, and two outputs. A systematic procedure for pairing the two inputs with the corresponding two outputs is presented. The two multiloop proportional controllers so configured are designed via the parameter plane method. This economic configuration of controllers maintains the temperature profile almost at the optimal value whereas the point controllers fail to do so.
Resumo:
The effect of pressure on the electrical resistivity of bulk Si20Te80 glass has been studied up to a pressure of 8 GPa. A discontinuous transition occurs at a pressure of 7 GPa. The X-ray diffraction studies on the pressure quenched sample show that the high pressure phase is crystalline with hexagonal structure (c/a = 1.5). On heating, the high pressure hexagonal phase has on exothermic decomposition atT = 586 K into two crystalline phases, which are the stable phases tellurium and SiTe2 obtained by simple heating of the glass.
Resumo:
The electrical resistivity of layerd crystalline GeSe has been investigated up to a pressure of 100 kbar and down to liquid-nitrogen temperature by use of a Bridgman anvil device. A pressure-induced first-order phase transition has been observed in single-crystal GeSe near 6 GPa. The high-pressure phase is found to be quenchable and an x-ray diffraction study of the quenched material reveals that it has the face-centered-cubic structure. Resistivity measurements as a function of pressure and temperature suggest that the high-pressure phase is metallic.
Resumo:
Experiments are described which show that a monobath can be used for rapid in situ processing in a liquid gate for real-time holographic interferometry. This also permits utilization of a very simple solution handling system. Changes in emulsion thickness are reduced to an acceptable level and problems of matching refractive indices are eliminated by exposing and viewing the holograms in water. Excellent null patterns are obtained and real-time holographic interferometry can be carried out over long periods of time.
Resumo:
The application of an algorithm shows that maximum uniformity of film thickness on a rotating substrate is achieved for a normalized source-to-substrate distance ratio, h/r =1.183.
Resumo:
This paper describes the use of high-power thyristors in conjunction with a low-voltage supply for generating pulsed magnetic fields. A modular bank of electrolytic capacitors is charged through a programmable solid-state power supply and then rapidly discharged through a bank of thyristors into a magnetizing coil. The modular construction of capacitor banks enables the discrete control of pulse energy and time. Peak fields up to 15 telsa (150 KOe) and a half period of about 200 microseconds are generated through the discharges. Still higher fields are produced by discharging into a precooled coil ( 77°K). Measurement method for a pulsed field is described.
Resumo:
Abstract is not available.
Resumo:
After briefly reviewing the theory and instrumentation, results from a variety of experiments carried out by the authors on the photoacoustic spectroscopy of solids and surfaces by employing an indigenous spectrometer are discussed in the light of the recent literature. Some of the important findings discussed are, phase angle spectroscopy, anomalous behaviour of monolayers, unusual frequency dependence in small cell volumes, spectra of a variety of solids including amorphous arsenic chalcogenides, photoacoustic detection of phase transitions and determination of surface areas and surface acidities of oxides. Recent developments such as piezoelectric photoacoustic spectroscopy, depth profiling and subsurface imaging are also presented.
Resumo:
For the purposes of obtaining a number of components with nearly identical thickness distributions over the substrate area and of minimizing the inhomogeneities of the film, it is logical to presume that a substrate rotating on its own axis and revolving around another axis will give more uniformity in film thickness than a substrate only revolving around one axis. In relation to the practical applications, an investigation has been undertaken to study the refinement that can be achieved by using a planar planetary substrate holder. It is shown theoretically that the use of the planetary substrate holder under ideal conditions of source and geometry does not offer any further improvement in uniformity of thickness over the conventional rotary work-holder. It is also shown that the geometrical parameters alone have little influence over the uniformity achieved on a planetary substrate, because of the complex cyclidal motion of any point on it. However, for any given geometry, a non-integral speed ratio of the planetary substrate and the work-holder shows considerably less variation in thickness over the substrate area.
Resumo:
The electrical and optical properties of MWCNTs/DNA composite were studied. Electrical conductivity studies reveal that, the increase in CNTs concentration in DNA increases the conductivity. Fourier transformed Infrared (FTIR) spectrum shows that the CNTs are bonded to DNA covalently at the ends and defects sites and the wrapping of DNA on the CNTs is due to van der Waals force.
Resumo:
Purity of the glow-discharge plasma at atmospheric pressure for surface modification applications is always debatable, since it works at ambient atmosphere. We have demonstrated on the use of optical emission spectroscopy to test the purity of this kind of plasma. The effect of gas flow pattern, nature of gas, and its flow rate on the plasma chemistry was studied. The importance of proper system design in maintaining a uniform flow of heavy and inert gases as carrier gas in atmospheric glow-discharge plasma was confirmed. The surface of a plasma-treated PET sample was analyzed using X-ray photoelectron spectroscopy to verify the studies on plasma purity done using emission spectrum.
Resumo:
The design and implementation of a complete gas sensor system for liquified petroleum gas (LPG) gas sensing are presented. The system consists of a SnO2 transducer, a lowcost heater, an application specific integrated circuit (ASIC) with front-end interface circuitry, and a microcontroller interface for data logging. The ASIC includes a relaxation-oscillator-based heater driver circuit that is capable of controlling the sensor operating temperature from 100degC to 425degC. The sensor readout circuit in the ASIC, which is based on the resistance to time conversion technique, has been designed to measure the gas sensor response over three orders of resistance change during its interaction with gases.
Resumo:
Nanoindentation technique was employed to measure the changes in mechanical properties of a glass preform subjected to different levels of UV exposure. The results reveal that short-term exposure leads to an appreciable increase in the Young's modulus (E), suggesting the densification of the glass, confirming the compaction-densification model. However, on prolonged exposure, E decreases, which provides what we believe to be the first direct evidence of dilation in the glass leading into the Type IIA regime. The present results rule out the hypothesis that continued exposure leads to an irreversible compaction and prove that index modulation regimes are intrinsic to the glass matrix.