233 resultados para Padrão IEEE 802.16
Resumo:
We consider the problem of centralized routing and scheduling for IEEE 802.16 mesh networks so as to provide Quality of Service (QoS) to individual real and interactive data applications. We first obtain an optimal and fair routing and scheduling policy for aggregate demands for different source- destination pairs. We then present scheduling algorithms which provide per flow QoS guarantees while utilizing the network resources efficiently. Our algorithms are also scalable: they do not require per flow processing and queueing and the computational requirements are modest. We have verified our algorithms via extensive simulations.
Resumo:
We consider a dense, ad hoc wireless network confined to a small region, such that direct communication is possible between any pair of nodes. The physical communication model is that a receiver decodes the signal from a single transmitter, while treating all other signals as interference. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organise into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first argue that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc network (described above) as a single cell, we study the optimal hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Theta(opt) bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form d(opt)((P) over bar (t)) x Theta(opt) with d(opt) scaling as (P) over bar (1/eta)(t), where (P) over bar (t) is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then provide a simple characterisation of the optimal operating point.
Resumo:
We consider a dense, ad hoc wireless network confined to a small region, such that direct communication is possible between any pair of nodes. The physical communication model is that a receiver decodes the signal from a single transmitter, while treating all other signals as interference. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organise into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first argue that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc network (described above) as a single cell, we study the optimal hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Thetaopt bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form dopt(Pmacrt) x Thetaopt with dopt scaling as Pmacrt 1 /eta, where Pmacrt is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then pro- - vide a simple characterisation of the optimal operating point.
Resumo:
There have been several studies on the performance of TCP controlled transfers over an infrastructure IEEE 802.11 WLAN, assuming perfect channel conditions. In this paper, we develop an analytical model for the throughput of TCP controlled file transfers over the IEEE 802.11 DCF with different packet error probabilities for the stations, accounting for the effect of packet drops on the TCP window. Our analysis proceeds by combining two models: one is an extension of the usual TCP-over-DCF model for an infrastructure WLAN, where the throughput of a station depends on the probability that the head-of-the-line packet at the Access Point belongs to that station; the second is a model for the TCP window process for connections with different drop probabilities. Iterative calculations between these models yields the head-of-the-line probabilities, and then, performance measures such as the throughputs and packet failure probabilities can be derived. We find that, due to MAC layer retransmissions, packet losses are rare even with high channel error probabilities and the stations obtain fair throughputs even when some of them have packet error probabilities as high as 0.1 or 0.2. For some restricted settings we are also able to model tail-drop loss at the AP. Although involving many approximations, the model captures the system behavior quite accurately, as compared with simulations.
Resumo:
This paper presents a Radix-4(3) based FFT architecture suitable for OFDM based WLAN applications. The radix-4(3) parallel unrolled architecture presented here, uses a radix-4 butterfly unit which takes all four inputs in parallel and can selectively produce one out of the four outputs. A 64 point FFT processor based on the proposed architecture has been implemented in UMC 130nm 1P8M CMOS process with a maximum clock frequency of 100 MHz and area of 0.83mm(2). The proposed processor provides a throughput of four times the clock rate and can finish one 64 point FFT computation in 16 clock cycles. For IEEE 802.11a/g WLAN, the processor needs to be operated at a clock rate of 5 MHz with a power consumption of 2.27 mW which is 27% less than the previously reported low power implementations.
Resumo:
Frequency multiplication (FM) can be used to design low power frequency synthesizers. This is achieved by running the VCO at a much reduced frequency, while employing a power efficient frequency multiplier, and also thereby eliminating the first few dividers. Quadrature signals can be generated by frequency- multiplying low frequency I/Q signals, however this also multiplies the quadrature error of these signals. Another way is generating additional edges from the low-frequency oscillator (LFO) and develop a quadrature FM. This makes the I-Q precision heavily dependent on process mismatches in the ring oscillator. In this paper we examine the use of fewer edges from LFO and a single stage polyphase filter to generate approximate quadrature signals, which is then followed by an injection-locked quadrature VCO to generate high- precision I/Q signals. Simulation comparisons with the existing approach shows that the proposed method offers very good phase accuracy of 0.5deg with only a modest increase in power dissipation for 2.4 GHz IEEE 802.15.4 standard using UMC 0.13 mum RFCMOS technology.
Resumo:
In modern wireline and wireless communication systems, Viterbi decoder is one of the most compute intensive and essential elements. Each standard requires a different configuration of Viterbi decoder. Hence there is a need to design a flexible reconfigurable Viterbi decoder to support different configurations on a single platform. In this paper we present a reconfigurable Viterbi decoder which can be reconfigured for standards such as WCDMA, CDMA2000, IEEE 802.11, DAB, DVB, and GSM. Different parameters like code rate, constraint length, polynomials and truncation length can be configured to map any of the above mentioned standards. Our design provides higher throughput and scalable power consumption in various configuration of the reconfigurable Viterbi decoder. The power and throughput can also be optimized for different standards.
Resumo:
In uplink OFDMA, carrier frequency offsets (CFO) and/or timing offsets (TO) of other users with respect to a desired user can cause multiuser interference (MUI). In practical uplink OFDMA systems (e.g., IEEE 802.16e standard), effect of this MUI is made acceptably small by requiring that frequency/timing alignment be achieved at the receiver with high precision (e.g., CFO must be within 1 % of the subcarrier spacing and TO must be within 1/8th of the cyclic prefix duration in IEEE 802.16e), which is realized using complex closed-loop frequency/timing correction between the transmitter and the receiver. An alternate open-loop approach to handle the MUI induced by large CFOs and TOs is to employ interference cancellation techniques at the receiver. In this paper, we first analytically characterize the degradation in the average output signal-to-interference ratio (SIR) due to the combined effect of large CFOs and TOs in uplink OFDMA. We then propose a parallel interference canceller (PIC) for the mitigation of interference due to CFOs and TOs in this system. We show that the proposed PIC effectively mitigates the performance loss due to CFO/TO induced interference in uplink OFDMA.
Resumo:
The IEEE 802.1le medium access control (MAC) standard provides distributed service differentiation or Quality-of- Service (QoS) by employing a priority system. In 802.1 le networks, network traffic is classified into different priorities or access categories (ACs). Nodes maintain separate queues for each AC and packets at the head-of-line (HOL) of each queue contend for channel access using AC-specific parameters. Such a mechanism allows the provision of differentiated QoS where high priority, performance sensitive traffic such as voice and video applications will enjoy less delay, greater throughput and smaller loss, compared to low priority traffic (e. g. file transfer). The standard implicitly assumes that nodes are honest and will truthfully classify incoming traffic into its appropriate AC. However, in the absence of any additional mechanism, selfish users can gain enhanced performance by selectively classifying low priority traffic as high priority, potentially destroying the QoS capability of the system.
Resumo:
We provide a comparative performance analysis of network architectures for beacon enabled Zigbee sensor clusters using the CSMA/CA MAC defined in the IEEE 802.15.4 standard, and organised as (i) a star topology, and (ii) a two-hop topology. We provide analytical models for obtaining performance measures such as mean network delay, and mean node lifetime. We find that the star topology is substantially superior both in delay performance and lifetime performance than the two-hop topology.
Resumo:
In many IEEE 802.11 WLAN deployments, wireless clients have a choice of access points (AP) to connect to. In current systems, clients associate with the access point with the strongest signal to noise ratio. However, such an association mechanism can lead to unequal load sharing, resulting in diminished system performance. In this paper, we first provide a numerical approach based on stochastic dynamic programming to find the optimal client-AP association algorithm for a small topology consisting of two access points. Using the value iteration algorithm, we determine the optimal association rule for the two-AP topology. Next, utilizing the insights obtained from the optimal association ride for the two-AP case, we propose a near-optimal heuristic that we call RAT. We test the efficacy of RAT by considering more realistic arrival patterns and a larger topology. Our results show that RAT performs very well in these scenarios as well. Moreover, RAT lends itself to a fairly simple implementation.
Resumo:
The poor performance of TCP over multi-hop wireless networks is well known. In this paper we explore to what extent network coding can help to improve the throughput performance of TCP controlled bulk transfers over a chain topology multi-hop wireless network. The nodes use a CSMA/ CA mechanism, such as IEEE 802.11’s DCF, to perform distributed packet scheduling. The reverse flowing TCP ACKs are sought to be X-ORed with forward flowing TCP data packets. We find that, without any modification to theMAC protocol, the gain from network coding is negligible. The inherent coordination problem of carrier sensing based random access in multi-hop wireless networks dominates the performance. We provide a theoretical analysis that yields a throughput bound with network coding. We then propose a distributed modification of the IEEE 802.11 DCF, based on tuning the back-off mechanism using a feedback approach. Simulation studies show that the proposed mechanism when combined with network coding, improves the performance of a TCP session by more than 100%.
Resumo:
The resolution of the digital signal path has a crucial impact on the design, performance and the power dissipation of the radio receiver data path, downstream from the ADC. The ADC quantization noise has been traditionally included with the Front End receiver noise in calculating the SNR as well as BER for the receiver. Using the IEEE 802.15.4 as an example, we show that this approach leads to an over-design for the ADC and the digital signal path, resulting in larger power. More accurate specifications for the front-end design can be obtained by making SNRreg a function of signal resolutions. We show that lower resolution signals provide adequate performance and quantization noise alone does not produce any bit-error. We find that a tight bandpass filter preceding the ADC can relax the resolution requirement and a 1-bit ADC degrades SNR by only 1.35 dB compared to 8-bit ADC. Signal resolution has a larger impact on the synchronization and a 1-bit ADC costs about 5 dB in SNR to maintain the same level of performance as a 8-bit ADC.
Resumo:
A low-power frequency multiplication technique, developed for ZigBee (IEEE 802.15.4) like applications is presented. We have provided an estimate for the power consumption for a given output voltage swing using our technique. The advantages and disadvantages which determine the application areas of the technique are discussed. The issues related to design, layout and process variation are also addressed. Finally, a design is presented for operation in 2.405-2.485-GHz band of ZigBee receiver. SpectreRF simulations show 30% improvement in efficiency for our circuit with regard to conversion of DC bias current to output amplitude, against a LC-VCO. To establish the low-power credentials, we have compared our circuit with an existing technique; our circuit performs better with just 1/3 of total current from supply, and uses one inductor as against three in the latter case. A test chip was implemented in UMC 0.13-mum RF process with spiral on-chip inductors and MIM (metal-insulator-metal) capacitor option.
Resumo:
We consider a problem of providing mean delay and average throughput guarantees in random access fading wireless channels using CSMA/CA algorithm. This problem becomes much more challenging when the scheduling is distributed as is the case in a typical local area wireless network. We model the CSMA network using a novel queueing network based approach. The optimal throughput per device and throughput optimal policy in an M device network is obtained. We provide a simple contention control algorithm that adapts the attempt probability based on the network load and obtain bounds for the packet transmission delay. The information we make use of is the number of devices in the network and the queue length (delayed) at each device. The proposed algorithms stay within the requirements of the IEEE 802.11 standard.