319 resultados para D-Symmetric Operators
Resumo:
The partially exfoliated and reduced graphite oxide (PE-RGO) is prepared by low temperature thermal exfoliation of graphite oxide under air atmosphere. A symmetric carbon/carbon supercapacitor is studied in a Na2SO4 aqueous electrolyte. The discharge capacitance is 92 F g(-1), when symmetric cell is cycled between the potential ranges from 0 to 1.6 V. This system demonstrates a stable charge/discharge cycle behavior up to 3000 cycles when the cell is operated at a voltage window of 1.6 V. The utilization ratio of potential window is 90% for this system is attributed to the more negative value of electrodes potential when the cell voltage is set to 0 V. The low-temperature exfoliation approach is convenient for mass production of graphenes at low cost and it can be used as electrode material for energy storage applications. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This brief presents the capturability analysis of a 3-D Retro-proportional navigation (Retro-PN) guidance law, which uses a negative navigation constant (as against the usual positive one), for intercepting targets having higher speeds than interceptors. This modification makes it possible to achieve collision conditions that were inaccessible to the standard PN law. A modified polar coordinate system, that makes the model more compact, is used in this brief for capturability analysis. In addition to the ratio of the target to interceptor speeds, the directional cosines of the interceptor, and target velocity vectors play a crucial role in the capturability. The existence of nontrivial capture zone of the Retro-PN guidance law and necessary and sufficient conditions, for capturing the target in finite time, are presented. A sufficient condition on the navigation constant is derived to ensure finiteness of the line-of-sight turn rate. The results are more extensive than those available for 2-D engagements, which can be obtained as special cases of this brief. Simulation results are given to support the analytical results.
Resumo:
We prove that a proper holomorphic map between two nonplanar bounded symmetric domains of the same dimension, one of them being irreducible, is a biholomorphism. Our methods allow us to give a single, all-encompassing argument that unifies the various special cases in which this result is known. We discuss an application of these methods to domains having noncompact automorphism groups that are not assumed to act transitively.
Resumo:
Multilevel inverters with dodecagonal (12-sided polygon) voltage space vector structure have advantages, such as complete elimination of fifth and seventh harmonics, reduction in electromagnetic interference, reduction in device voltage ratings, reduction of switching frequency, extension of linear modulation range, etc., making it a viable option for high-power medium-voltage drives. This paper proposes two power circuit topologies capable of generating multilevel dodecagonal voltage space vector structure with symmetric triangles (for the first time) with minimum number of dc-link power supplies and floating capacitor H-bridges. The first power topology is composed of two hybrid cascaded five-level inverters connected to either side of an open-end winding induction machine. Each inverter consists of a three-level neutral-point-clamped inverter, which is cascaded with an isolated H-bridge making it a five-level inverter. The second topology is for a normal induction motor. Both of these circuit topologies have inherent capacitor balancing for floating H-bridges for all modulation indexes, including transient operations. The proposed topologies do not require any precharging circuitry for startup. A simple pulsewidth modulation timing calculation method for space vector modulation is also presented in this paper. Due to the symmetric arrangement of congruent triangles within the voltage space vector structure, the timing computation requires only the sampled reference values and does not require any offline computation, lookup tables, or angle computation. Experimental results for steady-state operation and transient operation are also presented to validate the proposed concept.
Resumo:
We address the problem of two-dimensional (2-D) phase retrieval from magnitude of the Fourier spectrum. We consider 2-D signals that are characterized by first-order difference equations, which have a parametric representation in the Fourier domain. We show that, under appropriate stability conditions, such signals can be reconstructed uniquely from the Fourier transform magnitude. We formulate the phase retrieval problem as one of computing the parameters that uniquely determine the signal. We show that the problem can be solved by employing the annihilating filter method, particularly for the case when the parameters are distinct. For the more general case of the repeating parameters, the annihilating filter method is not applicable. We circumvent the problem by employing the algebraically coupled matrix pencil (ACMP) method. In the noiseless measurement setup, exact phase retrieval is possible. We also establish a link between the proposed analysis and 2-D cepstrum. In the noisy case, we derive Cramer-Rao lower bounds (CRLBs) on the estimates of the parameters and present Monte Carlo performance analysis as a function of the noise level. Comparisons with state-of-the-art techniques in terms of signal reconstruction accuracy show that the proposed technique outperforms the Fienup and relaxed averaged alternating reflections (RAAR) algorithms in the presence of noise.
Resumo:
We affirmatively answer a question due to S. Bocherer concerning the feasibility of removing one differential operator from the standard collection of m + 1 of them used to embed the space of Jacobi forms of weight 2 and index m into several pieces of elliptic modular forms. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Let F and G be two bounded operators on two Hilbert spaces. Let their numerical radii be no greater than one. This note investigates when there is a Gamma-contraction (S, P) such that F is the fundamental operator of (S, P) and G is the fundamental operator of (S*, P*). Theorem 1 puts a necessary condition on F and G for them to be the fundamental operators of (S, P) and (S*, P*) respectively. Theorem 2 shows that this necessary condition is also sufficient provided we restrict our attention to a certain special case. The general case is investigated in Theorem 3. Some of the results obtained for Gamma-contractions are then applied to tetrablock contractions to figure out when two pairs (F1, F2) and (G(1), G(2)) acting on two Hilbert spaces can be fundamental operators of a tetrablock contraction (A, B, P) and its adjoint (A*, B*, P*) respectively. This is the content of Theorem 3. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
3-Dimensional Diffuse Optical Tomographic (3-D DOT) image reconstruction algorithm is computationally complex and requires excessive matrix computations and thus hampers reconstruction in real time. In this paper, we present near real time 3D DOT image reconstruction that is based on Broyden approach for updating Jacobian matrix. The Broyden method simplifies the algorithm by avoiding re-computation of the Jacobian matrix in each iteration. We have developed CPU and heterogeneous CPU/GPU code for 3D DOT image reconstruction in C and MatLab programming platform. We have used Compute Unified Device Architecture (CUDA) programming framework and CUDA linear algebra library (CULA) to utilize the massively parallel computational power of GPUs (NVIDIA Tesla K20c). The computation time achieved for C program based implementation for a CPU/GPU system for 3 planes measurement and FEM mesh size of 19172 tetrahedral elements is 806 milliseconds for an iteration.
Resumo:
Tuberculosis is continuing as a problem of mankind. With evolution, MDR and XDR forms of tuberculosis have emerged from drug sensitive strain. MDR and XDR strains are resistant to most of the antibiotics, making the management more difficult. BCG vaccine is not providing complete protection against tuberculosis. Therefore new infections are spreading at a tremendous rate. At the present moment there is experimental evidence to believe that Vitamin A and Vitamin D has anti-mycobacterial property. It is in this context, we have hypothesized a host based approach using the above vitamins that can cause possible prevention and cure of tuberculosis with minimal chance of resistance or toxicity. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Let C be a smooth irreducible projective curve of genus g and L a line bundle of degree d generated by a linear subspace V of H-0 (L) of dimension n+1. We prove a conjecture of D. C. Butler on the semistability of the kernel of the evaluation map V circle times O-C -> L and obtain new results on the stability of this kernel. The natural context for this problem is the theory of coherent systems on curves and our techniques involve wall crossing formulae in this theory.
Resumo:
Understanding the transients of buckling in drying colloidal suspensions is pivotal for producing new functional microstructures with tunable morphologies. Here, we report first observations and elucidate the buckling instability induced morphological transition (sphere to ring structure) in an acoustically levitated, heated nanosuspension droplet using dynamic energy balance. Droplet deformation featuring the formation of symmetric cavities is initiated by capillary pressure that is two to three orders of magnitude greater than the acoustic radiation pressure, thus indicating that the standing pressure field has no influence on the buckling front kinetics. With an increase in heat flux, the growth rate of surface cavities and their post-buckled volume increase while the buckling time period reduces, thereby altering the buckling pathway and resulting in distinct precipitate structures. However, irrespective of the heating rate, the volumetric droplet deformation exhibits a linear time dependence and the droplet vaporization is observed to deviate from the classical D-2-law.
Resumo:
In the vector space of algebraic curvature operators we study the reaction ODE which is associated to the evolution equation of the Riemann curvature operator along the Ricci flow. More precisely, we give a partial classification of the zeros of this ODE up to suitable normalization and analyze the stability of a special class of zeros of the same. In particular, we show that the ODE is unstable near the curvature operators of the Riemannian product spaces where is an Einstein (locally) symmetric space of compact type and not a spherical space form when .
Resumo:
3-D full-wave method of moments (MoM) based electromagnetic analysis is a popular means toward accurate solution of Maxwell's equations. The time and memory bottlenecks associated with such a solution have been addressed over the last two decades by linear complexity fast solver algorithms. However, the accurate solution of 3-D full-wave MoM on an arbitrary mesh of a package-board structure does not guarantee accuracy, since the discretization may not be fine enough to capture spatial changes in the solution variable. At the same time, uniform over-meshing on the entire structure generates a large number of solution variables and therefore requires an unnecessarily large matrix solution. In this paper, different refinement criteria are studied in an adaptive mesh refinement platform. Consequently, the most suitable conductor mesh refinement criterion for MoM-based electromagnetic package-board extraction is identified and the advantages of this adaptive strategy are demonstrated from both accuracy and speed perspectives. The results are also compared with those of the recently reported integral equation-based h-refinement strategy. Finally, a new methodology to expedite each adaptive refinement pass is proposed.
Resumo:
The solid state structure of a new seven-membered sugar oxepane derivative, namely, p-bromo phenyl 4,5,7-tri-O-benzyl-beta-D-glycero-D-talo-septanoside is discussed, as determined through single crystal X-ray structural determination and in relation to their conformational features. The molecule adopts twist-chair as the preferred conformation, with conformational descriptor (TC2,3)-T-0,1. The solid state packing of molecules is governed by a rich network of non-covalent bonding originating from O-H center dot center dot center dot O, C-H center dot center dot center dot pi, C-H center dot center dot center dot Br and aromatic pi center dot center dot center dot pi interactions that stabilize the packing of molecules in the crystal. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the problem of timing recovery for 2-D magnetic recording (TDMR) channels. We develop a timing error model for TDMR channel considering the phase and frequency offsets with noise. We propose a 2-D data-aided phase-locked loop (PLL) architecture for tracking variations in the position and movement of the read head in the down-track and cross-track directions and analyze the convergence of the algorithm under non-separable timing errors. We further develop a 2-D interpolation-based timing recovery scheme that works in conjunction with the 2-D PLL. We quantify the efficiency of our proposed algorithms by simulations over a 2-D magnetic recording channel with timing errors.