47 resultados para Molecular Beam Epitaxy
Resumo:
An ultraviolet photoelectron spectrometer for the study of van der Waals molecules has been designed and fabricated indigenously. The spectrometer consists of an HeI discharge lamp, a molecular beam sample inlet system, an electrostatic lens, a 180-degrees hemispherical electrostatic analyser and a channeltron detector. Performance of the spectrometer is illustrated with an example.
Resumo:
New molecular beam scattering experiments have been performed to measure the total ( elastic plus inelastic) cross sections as a function of the velocity in collisions between water and hydrogen sulfide projectile molecules and the methane target. Measured data have been exploited to characterize the range and strength of the intermolecular interaction in such systems, which are of relevance as they drive the gas phase molecular dynamics and the clathrate formation. Complementary information has been obtained by rotational spectra, recorded for the hydrogen sulfide-methane complex, with a pulsed nozzle Fourier transform microwave spectrometer. Extensive ab initio calculations have been performed to rationalize all the experimental findings. The combination of experimental and theoretical information has established the ground for the understanding of the nature of the interaction and allows for its basic components to be modelled, including charge transfer, in these weakly bound systems. The intermolecular potential for H2S-CH4 is significantly less anisotropic than for H2O-CH4, although both of them have potential minima that can be characterized as `hydrogen bonded'.
Resumo:
High-quality GaN epilayers were grown on Si (1 1 1) substrates by molecular beam epitaxy using a new growth process sequence which involved a substrate nitridation at low temperatures, annealing at high temperatures, followed by nitridation at high temperatures, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. The material quality of the GaN films was also investigated as a function of nitridation time and temperature. Crystallinity and surface roughness of GaN was found to improve when the Si substrate was treated under the new growth process sequence. Micro-Raman and photoluminescence (PL) measurement results indicate that the GaN film grown by the new process sequence has less tensile stress and optically good. The surface and interface structures of an ultra thin silicon nitride film grown on the Si surface are investigated by core-level photoelectron spectroscopy and it clearly indicates that the quality of silicon nitride notably affects the properties of GaN growth. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Ultra thin films of pure silicon nitride were grown on a Si (1 1 1) surface by exposing the surface to radio-frequency (RF) nitrogen plasma with a high content of nitrogen atoms. The effect of annealing of silicon nitride surface was investigated with core-level photoelectron spectroscopy. The Si 2p photoelectron spectra reveals a characteristic series of components for the Si species, not only in stoichiometric Si3N4 (Si4+) but also in the intermediate nitridation states with one (Si1+) or three (Si3+) nitrogen nearest neighbors. The Si 2p core-level shifts for the Si1+, Si3+, and Si4+ components are determined to be 0.64, 2.20, and 3.05 eV, respectively. In annealed sample it has been observed that the Si4+ component in the Si 2p spectra is significantly improved, which clearly indicates the crystalline nature of silicon nitride. The high resolution X-ray diffraction (HRXRD), scanning electron microscopy (SEM) and photoluminescence (PL) studies showed a significant improvement of the crystalline qualities and enhancement of the optical properties of GaN grown on the stoichiometric Si3N4 by molecular beam epitaxy (MBE). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Non-polar a-plane GaN films were grown on an r-plane sapphire substrate by plasma assisted molecular beam epitaxy (PAMBE). The effect of growth temperature on structural, morphological and optical properties has been studied. The growth of non-polar a-plane (1 1 - 2 0) orientation of the GaN epilayers were confirmed by high resolution X-ray diffraction (HRXRD) study. The X-ray rocking curve (XRC) full width at half maximum of the (1 1 - 2 0) reflection shows in-plane anisotropic behavior and found to decrease with increase in growth temperature. The atomic force micrograph (AFM) shows island-like growth for the film grown at a lower temperature. Surface roughness has been decreased with increase in growth temperature. Room temperature photoluminescence shows near band edge emission at 3.434-3.442 eV. The film grown at 800 degrees C shows emission at 2.2 eV, which is attributed to yellow luminescence along with near band edge emission. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Negative differential capacitance (NDC) has been observed in n-GaN/p-Si heterojunctions grown by plasma assisted molecular beam epitaxy (PAMBE). The NDC is observed at low frequencies 1 and 10 kilohertz (kHz) and disappeared at a higher testing frequency of 100 kHz. The NDC is also studied with temperature and found that it has disappeared above 323 degrees C. Current-Voltage (I-V) characteristics of n-GaN /p-Si heterojunction were measured at different temperatures and are attributed to the space-charge-limited current (SCLC). A simple model involving two quantum states is proposed to explain the observed NDC behavior. (C) 2010 Elsevier Ltd. All rights reserved.
Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes
Resumo:
InN/GaN heterostructure based Schottky diodes were fabricated by plasma-assisted molecular beam epitaxy. The temperature dependent electrical transport properties were carried out for InN/GaN heterostructure. The barrier height and the ideality factor of the Schottky diodes were found to be temperature dependent. The temperature dependence of the barrier height indicates that the Schottky barrier height is inhomogeneous in nature at the heterostructure interface. The higher value of the ideality factor and its temperature dependence suggest that the current transport is primarily dominated by thermionic field emission (TFE) other than thermionic emission (TE). The room temperature barrier height obtained by using TE and TFE models were 1.08 and 1.43 eV, respectively. (C) 2011 American Institute of Physics. doi: 10.1063/1.3549685]
Resumo:
One of the scientific challenges of growing InN quantum dots (QDs), using Molecular beam epitaxy (MBE), is to understand the fundamental processes that control the morphology and distribution of QDs. A systematic manipulation of the morphology, optical emission, and structural properties of InN/Si (111) QDs is demonstrated by changing the growth kinetics parameters such as flux rate and growth time. Due to the large lattice mismatch, between InN and Si (similar to 8%), the dots formed from the Strannski-Krastanow (S-K) growth mode are dislocated. Despite the variations in strain (residual) and the shape, both the dot size and pair separation distribution show the scaling behavior. We observed that the distribution of dot sizes, for samples grown under varying conditions, follow the scaling function.
Resumo:
Photoluminescence (PL) of high quality GaN epitaxial layer grown on beta-Si3N4/Si (1 1 1) substrate using nitridation-annealing-nitridation method by plasma-assisted molecular beam epitaxy (PA-MBE) was investigated in the range of 5-300 K. Crystallinity of GaN epilayers was evaluated by high resolution X-ray diffraction (HRXRD) and surface morphology by Atomic Force Microscopy (AFM) and high resolution scanning electron microscopy (HRSEM). The temperature-dependent photoluminescence spectra showed an anomalous behaviour with an `S-like' shape of free exciton (FX) emission peaks. Distant shallow donor-acceptor pair (DAP) line peak at approximately 3.285 eV was also observed at 5 K, followed by LO replica sidebands separated by 91 meV. The activation energy of the free exciton for GaN epilayers was also evaluated to be similar to 27.8 +/- 0.7 meV from the temperature-dependent PL studies. Low carrier concentrations were observed similar to 4.5 +/- 2 x 10(17) Cm-3 by measurements and it indicates the silicon nitride layer, which not only acts as a growth buffer layer, but also effectively prevents Si diffusion from the substrate to GaN epilayers. The absence of yellow band emission at around 2.2 eV signifies the high quality of film. The tensile stress in GaN film calculated by the thermal stress model agrees very well with that derived from Raman spectroscopy. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
InN layers were directly grown on Ge substrate by plasma-assisted molecular beam epitaxy (PAMBE). The valence band offset (VBO) of wurtzite InN/Ge heterojunction is determined by X-ray photoemission spectroscopy (XPS). The valence band of Ge is found to be 0.18 +/- 0.04 eV above that of InN and a type-II heterojunction with a conduction band offset (CBO) of similar to 0.16 eV is found. The accurate determination of the VBO and CBO is important for the design of InN/Ge based electronic devices. (C) 2011 Elsevier B.A. All rights reserved.
Resumo:
GaN films were grown on c-plane sapphire by plasma-assisted molecular beam epitaxy (PAMBE). The effect of N/Ga flux ratio on structural, morphological, and optical properties was studied. The dislocation density found to increase with increasing the N/Ga ratio. The surface morphology of the films as seen by scanning electron microscopy shows pits on the surface and found that the pit density on the surface increases with N/Ga ratio. The room temperature photoluminescence study reveals the shift in band-edge emission toward the lower energy with increase in N/Ga ratio. This is believed to arise from the reduction in compressive stress in the films as is evidenced by room temperature Raman study. The transport studied on the Pt/GaN Schottky diodes showed a significant increase in leakage current with an increase in N/Ga ratio and was found to be caused by the increase in pit density as well as increase in dislocation density in the GaN films. (C) 2011 American Institute of Physics. [doi:10.1063/1.3634116]
Resumo:
We have grown Ga deficient GaN epitaxial films on (0001) sapphire substrate by plasma-assisted molecular beam epitaxy and report the experimental evidence of room temperature ferromagnetic behavior. The observed yellow emission peak in room temperature photoluminescence spectra and the peak positioning at 300 cm(-1) in Raman spectra confirms the existence of Ga vacancies. The x-ray photoelectron spectroscopic measurements further confirmed the formation of Ga vacancies; since the N/Ga is found to be >1. The ferromagnetism is believed to originate from the polarization of the unpaired 2p electrons of N surrounding the Ga vacancy. (C) 2011 American Institute of Physics. [doi:10.1063/1.3654151]
Resumo:
Modulation-doped two-dimensional hole gas structures consisting of a strained germanium channel on relaxed Ge0.7Si0.3 buffer layers were grown by molecular-beam epitaxy. Sample processing was optimized to substantially reduce the contribution from the parasitic conducting layers. Very high hall mobilities of 1700 cm2/V s for holes were observed at 295 K which are the highest reported to date for any kind of p-type silicon-based heterostructures. Hall measurements were carried out from 13 to 300 K to determine the temperature dependence of the mobility and carrier concentration. The carrier concentration at room temperature was 7.9×1011 cm−2 and decreased by only 26% at 13 K, indicating very little parallel conduction. The high-temperature mobility obeys a T−α behavior with α∼2, which can be attributed to intraband optical phonon scattering.
Resumo:
In the present work, we report the growth of wurtzite InN epilayers on GaN/Si (1 1 1) substrate by plasma-assisted molecular beam epitaxy (PAMBE). The growth parameters such as indium flux, substrate temperature and RF power affect the crystallographic and morphological properties of InN layers, which were evaluated using high resolution X-ray diffraction (HRXRD) analysis and atomic force microscopy (AFM). It is found that excess indium (In) concentrations and surface roughness were increased with increase in In flux and growth temperature. The intensity of HRXRD (0 0 0 2) peak, corresponding to c-axis orientation has been increased and full width at half maxima (FWHM) has decreased with increase in RF power. It was found that highly c-axis oriented InN epilayers can be grown at 450 degrees C growth temperature, 450 W RF power and 1.30 x 10(-7) mbar In beam equivalent pressure (BEP). The energy gap of InN layers grown by optimizing growth conditions was determined by photoluminescence and optical absorption measurement. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The present work explores the electrical transport and infrared (IR) photoresponse properties of InN nanorods (NRs)/n-Si heterojunction grown by plasma-assisted molecular beam epitaxy. Single-crystalline wurtzite structure of InN NRs is verified by the X-ray diffraction and transmission electron microscopy. Raman measurements show that these wurtzite InN NRs have sharp peaks E(2)(high) at 490.2 cm(-1) and A(1)(LO) at 591 cm(-1). The current transport mechanism of the NRs is limited by three types of mechanisms depending on applied bias voltages. The electrical transport properties of the device were studied in the range of 80 to 450 K. The faster rise and decay time indicate that the InN NRs/n-Si heterojunction is highly sensitive to IR light.