71 resultados para Chromatography, High Pressure Liquid
Resumo:
An investigation of the phase transitions at high pressures in the alums mentioned in the title has been carried out using EPR of the Cr3+ ion (at the trivalent metal ion site). It is observed that at ambient as well as at high pressures there is a change of slope in the linear variations of the zero field splitting with temperature and that the low temperature phase is characterised by a large number of lines in the EPR spectra. The transition temperature shows a large positive shift with pressure, for both the alums. All these facts are explained in terms of our model of the origin of the trigonal field at the trivalent metal ion site as well as the details of the motion of NH4+ ion.
Resumo:
The effect of pressure on the electrical resistivity of bulk Si20Te80 glass is reported. Results of calorimetric, X-ray and transmission electron microscopy investigations at different stages of crystallization of bulk Si20Te80 glass are also presented. A pressure induced glass-to-crystal transition occurs at a pressure of 7 GPa. Pressure and temperature dependence of the electrical resistivity of Si20Te80 glass show the observed transition is a pressure induced glassy semiconductor to crystalline metal transition. The glass also exhibits a double Tg effect and double stage crystallization, under heating. The differences between the temperature induced crystallization (primary crystallization) and pressure induced congruent crystallization are discussed.
Resumo:
1H NMR at high hydrostatic pressures and compressibility studies show that the protonic conductor (NH4)4Fe(CN)6·1.5H2O undergoes a phase transition around 0.45 GPa. The transition is characterized by a large hysteresis. From the NMR studies, an activation volume of 6% is obtained below the phase transition, indicating the dominance of Frenkel defects.
Resumo:
The effect of pressure on the conductivity of fast ion conducting AgI-Ag2O-MoO3 glasses has been investigated down to 150 K. The observed variation of conductivities appears to support the application of cluster model to the ionic glasses.
Resumo:
Pressure and temperature dependence of the electrical resistivity of amorphous Ga20Te80 alloy is reported for the first time. The alloy undergoes a pressure induced amorphous semiconductor-to-crystalline metal phase transition at 6.5 ± 0.5 GPa. The high pressure crystalline phase is a mixture of Te and GaTe3 phases.
Resumo:
The presence of phases showing icosahedral point symmetry was reported by Shechtman, Blech, Gratias and Cahn in rapidly quenched alloys of Al---Mn, Al---Fe and Al---Cr, and subsequently many other splat-cooled alloys with the i phase have been reported. In this paper we present the first results of high pressure experiments carried out on Al---Fe and Al---Mn quasi-crystals. The experiments performed at room temperature showed irreversible quasi-crystal-to-crystal transitions in Al---Mn and Al---Fe alloys. The transition pressures are 49 kbar for Al78Mn22, 93 kbar for Al86Mn14, 79 kbar for Al86Fe14, 54 kbar for Al82Fe18 and 108 kbar for Al75Fe25. The high pressure phases are found to be the equilibrium phases.
Resumo:
A study of the transport properties of layered crystalline semiconductors GeS (undoped and doped with Ag, P impurity) under quasihydrostatic pressure using Bridgman anvil system is made for the first time. Pressure-induced effects in undoped crystals reveal initial rise in resistivity followed by two broad peaks at higher pressures. Silver doping induces only minor changes in the behaviour except removing the second peak. Phosphorous impurity is found to have drastic effect on the transport properties. Temperature dependence of the resistivity exhibits two activation energies having opposite pressure coefficients. Results are discussed in the light of intrinsic features of the layered semiconductors.
Resumo:
The pressure dependence (0-7 kbar) of the magnetic susceptibility is reported for the intermediate valence system EuPd2Si2 in the temperature interval 77-300K. It is found that the thermally induced valence transition becomes more gradual on application of pressure The characteristic fluctuation temperature Tf, also seems to be pressure dependent.
Resumo:
Electrical transport in Bi doped amorphous semiconductors (GeSe3.5)100-xBix (x=0,4,10) is studied in a Bridgman anvil system up to a pressure of 90 kbar and down to 77 K. A pressure induced continuous transition from an amorphous semiconductor to a metal-like solid is observed in GeSe3.5. The addition of Bi disturbs significantly the behaviour of resistivity with pressure. The results are discussed in the light of molecular cluster model for GeySe1-y proposed by Phillips.
Resumo:
A compact clamp-type high pressure cell for carrying out electrical conductivity measurements on small solid samples of size 1 mm or less at pressures upto 8 GPa (i.e., 80 kbar) and for use down to 77 K has been designed and fabricated. The pressure generated in the sample region has been calibrated at room temperature against the polymorphic phase transitions of Bismuth and Ytterbium. The pressure relaxation of the clamp at low temperatures has been estimated by monitoring the electrical conductivity behavior of lead. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
In this paper, we consider a more realistic model of a spherical blast wave of moderate strength. An arbitrary number of terms for the series solution in each of the regions behind the main shock - the expansion region, the nearly uniform region outside the main expansion and the region between the contact surface and the main shock, have been generated and matched across the boundaries. We then study the convergence of the solution by using Pade approximation. It constitutes a genuine analytic solution for a moderately strong explosion, which, however, does not involve a secondary shock. The pressure distribution behind the shock however shows some significant changes in the location of the tail of the rarefaction and the interface, in comparison to the planar problem. The theory developed for the spherical blasts is also extended to cylindrical blasts. The results are compared with the numerical solution.
Resumo:
High-pressure Raman and mid-infrared spectroscopic studies were carried out on ZrP2O7 to 23.2 and 13 GPa respectively. In the pressure range 0.7-4.3 GPa the lattice mode at 248 cm(-1) disappears, new modes appear around 380 and 1111 cm(-1) and the strong symmetric stretching mode at 476 cm(-1) softens, possibly indicating a subtle phase transition. Above 8 GPa all the modes broaden, and all of the Raman modes disappear beyond 18 GPa. On decompression from the highest pressure, 23.2, to 0 GPa all of the modes reappear but with larger full width at half maximum. Lattice dynamics of the high temperature phase of ZrP2O7 were studied using first principles method and compared with experimental values. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The variation of resistivity in an amorphous As30Te70-xSix system of glasses with high pressure has been studied for pressures up to 8 GPa. It is found that the electrical resistivity and the conduction activation energy decrease continuously with increase in pressure, and samples become metallic in the pressure range 1.0-2.0 GPa. Temperature variation studies carried out at a pressure of 0.92 GPa show that the activation energies lie in the range 0.16-0.18eV. Studies on the composition/average co-ordination number (r) dependence of normalized electrical resistivity at different pressures indicate that rigidity percolation is extended, the onset of the intermediate phase is around (r) = 2.44, and completion at (r) = 2.56, respectively, while the chemical threshold is at (r) = 2.67. These results compare favorably with those obtained from electrical switching and differential scanning calorimetric studies.