101 resultados para Bilayer
Resumo:
Anhydrobiotic organisms undergo periods of acute dehydration during their life cycle. It is of interest to understand how the biomembrane remains intact through such stress. A disaccharide, trehalose, which is metabolised during anhydrobiosis is found to prevent disruption of model membrane systems. Molecular modelling techniques are used to investigate the possible mode of interaction of trehalose with a model monolayer. The objective is to maximise hydrogen bonding between the two systems. A phospholipid matrix consisting of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) is chosen to represent the monolayer. The crystal structure of DMPC reveals that there are two distinct conformers designated as A and B. An expansion of the monolayer, coplanar with its surface, results in the trehalose molecule being accommodated in a pocket formed by four B conformers. One glucose ring of the sugar rests on the hydrophobic patch provided by the choline methyls of an A conformer. Five hydrogen bonds are formed involving the phosphate oxygens of three of the surrounding B conformers. The model will be discussed with reference to relevant experimental data on the interaction.
Resumo:
We compute the entropy and transport properties of water in the hydration layer of dipalmitoylphosphatidylcholine bilayer by using a recently developed theoretical scheme two-phase thermodynamic model, termed as 2PT method; S.-T. Lin et al., J. Chem. Phys. 119, 11792 (2003)] based on the translational and rotational velocity autocorrelation functions and their power spectra. The weights of translational and rotational power spectra shift from higher to lower frequency as one goes from the bilayer interface to the bulk. Water molecules near the bilayer head groups have substantially lower entropy (48.36 J/mol/K) than water molecules in the intermediate region (51.36 J/mol/K), which have again lower entropy than the molecules (60.52 J/mol/K) in bulk. Thus, the entropic contribution to the free energy change (T Delta S) of transferring an interface water molecule to the bulk is 3.65 kJ/mol and of transferring intermediate water to the bulk is 2.75 kJ/mol at 300 K, which is to be compared with 6.03 kJ/mol for melting of ice at 273 K. The translational diffusion of water in the vicinity of the head groups is found to be in a subdiffusive regime and the rotational diffusion constant increases going away from the interface. This behavior is supported by the slower reorientational relaxation of the dipole vector and OH bond vector of interfacial water. The ratio of reorientational relaxation time for Legendre polynomials of order 1 and 2 is approximately 2 for interface, intermediate, and bulk water, indicating the presence of jump dynamics in these water molecules. (C) 2010 American Institute of Physics. doi:10.1063/1.3494115]
Resumo:
The structure and organization of dodecyl sulfate (DDS) surfactant chains intercalated in an Mg-Al layered double hydroxide (LDH), Mg(1-x)Alx(OH)(2), with differing Al/Mg ratios has been investigated. The Mg-Al LDHs can be prepared over a range of compositions with x varying from 0.167 to 0.37 and therefore provides a simple system to study how the organization of the alkyl chains of the intercalated DDS anions change with packing density; the Al/Mg ratio or x providing a convenient handle to do so. Powder X-ray diffraction measurements showed that at high packing densities (x >= 0.3) the alkyl chains of the intercalated dodecyl sulfate ions are anchored on opposing LDH sheets and arranged as bilayers with an interlayer spacing of similar to 27 angstrom. At lower packing densities (x < 0.2) the surfactant chains form a monolayer with the alkyl chains oriented flat in the galleries with an interlayer spacing of similar to 8 angstrom. For the in between compositions, 0.2 <= x < 0.3, the material is biphasic. MD simulations were performed to understand how the anchoring density of the intercalated surfactant chains in the Mg-Al LDH-DDS affects the organization of the chains and the interlayer spacing. The simulations are able to reproduce the composition driven monolayer to bilayer transformation in the arrangement of the intercalated surfactant chains and in addition provide insights into the factors that decide the arrangement of the surfactant chains in the two situations. In the bilayer arrangement, it is the dispersive van der Waals interactions between chains in opposing layers of the anchored bilayer that is responsible for the cohesive energy of the solid whereas at lower packing densities, where a monolayer arrangement is favored, Coulomb interactions between the positively charged Mg-Al LDH sheets and the negatively charged headgroup of the DDS anion dominate.
Resumo:
This article is a review of our work related to Raman studies of single layer and bilayer graphenes as a function Fermi level shift achieved by electrochemically top gating a field effect transistor. Combining the transport and in situ Raman studies of the field effect devices, a quantitative understanding is obtained of the phonon renormalization due to doping of graphene. Results are discussed in the light of time dependent perturbation theory, with electron phonon coupling parameter as an input from the density functional theory. It is seen that phonons near and Gamma and K points of the Brillouin zone are renormalized very differently by doping. Further, Gamma-phonon renormalization is different in bilayer graphene as compared to single layer, originating from their different electronic band structures near the zone boundary K-point. Thus Raman spectroscopy is not only a powerful probe to characterize the number of layers and their quality in a graphene sample, but also to quantitatively evaluate electron phonon coupling required to understand the performance of graphene devices.
Resumo:
In this paper, we propose a novel S/D engineering for dual-gated Bilayer Graphene (BLG) Field Effect Transistor (FET) using doped semiconductors (with a bandgap) as source and drain to obtain unipolar complementary transistors. To simulate the device, a self-consistent Non-Equilibrium Green's Function (NEGF) solver has been developed and validated against published experimental data. Using the simulator, we predict an on-off ratio in excess of 10(4) and a subthreshold slope of similar to 110mV/decade with excellent scalability and current saturation, for a 20nm gate length unipolar BLG FET. However, the performance of the proposed device is found to be strongly dependent on the S/D series resistance effect. The obtained results show significant improvements over existing reports, marking an important step towards bilayer graphene logic devices.
Resumo:
The bending rigidity kappa of bilayer membranes was studied with coarse grained soft repulsive potentials using dissipative particle dynamics (DPD) simulations. Using a modified Andersen barostat to maintain the bilayers in a tensionless state, the bending rigidity was obtained from a Fourier analysis of the height fluctuations. From simulations carried out over a wide range of membrane thickness, the continuum scaling relation kappa proportional to d(2) was captured for both the L-alpha and L-beta phases. For membranes with 4 to 6 tail beads, the bending rigidity in the L-beta phase was found to be 10-15 times higher than that observed for the L-alpha phase. From the quadratic scalings obtained, a six fold increase in the area stretch modulus, k(A) was observed across the transition. The magnitude of increase in both kappa and k(A) from the L-alpha to the L-beta phase is consistent with current experimental observations in lipid bilayers and to our knowledge provides for the first time a direct evaluation of the mechanical properties in the L-beta phase.
Resumo:
We investigate the influence of the ferromagnetic layer on the magnetic and transport properties of YBa2Cu3O7-delta in YBa2Cu3O7-delta (YBCO)/La0.7Sr0.3MnO3 (LSMO) bilayers. The temperature dependent dc magnetization study reveals the presence of magnetic anisotropy in YBCO/LSMO bilayer as compared to the pure YBCO layer. The ac susceptibility study on YBCO/LSMO bilayers reveals stronger pinning and the temperature dependent critical current is found to be less prone to temperature. Besides, the current (I) dependent electrical transport studies on YBCO/LSMO exhibit a significant reduction in the superconducting T-c with increase in I and it follows I-2/3 dependence in accord with the pair breaking effect. The higher reduction of superconducting T-c in YBCO/LSMO is believed to be due to the enhanced pair-breaking induced by the spin polarized carriers being injected into the superconductor. (C) 2011 American Institute of Physics. doi: 10.1063/1.3560029]
Resumo:
A structural analysis of alkyl chain conformation of an intercalated cationic lipid bilayer is described. Dialkyl dimethylammonium ions (di-C(n)DA) were ion exchanged into the galleries of layered cadmium thiophosphate to give Cd0.83PS3(di-C(n)DA)(0.34). The grafting density and interlayer expansions were identical to those for the intercalated single chain alkyl trimethylammonium (C(n)TA) bilayers. The increased methylene chain density in the galleries, however, forces the intercalated lipid to adopt a more trans ordered structure. Progression bands arising from the coupling of vibrational modes of trans methylene units are used to establish the extent of trans registry. Two types of ordered structures of the intercalated cationic lipid may be distinguished. One in which both alkyl chains adopt an all-trans geometry, and one in which the methylene bond adjacent to the headgroup on one of the alkyl chains is gauche. The latter structure is typically found in the crystalline state of these cationic lipids. The concentrations of the two structures were determined from the ratio of the intensities of the progression bands and were found to remain unchanged with temperature.
Resumo:
We present a simplified theory of carrier backscattering coefficient in a twofold degenerate asymmetric bilayer graphene nanoribbon (BGN) under the application of a low static electric field. We show that for a highly asymmetric BGN(Delta = gamma), the density of states in the lower subband increases more that of the upper, in which Delta and gamma are the gap and the interlayer coupling constant, respectively. We also demonstrate that under the acoustic phonon scattering regime, the formation of two distinct sets of energy subbands signatures a quantized transmission coefficient as a function of ribbon width and provides an extremely low carrier reflection coefficient for a better Landauer conductance even at room temperature. The well-known result for the ballistic condition has been obtained as a special case of the present analysis under certain limiting conditions which forms an indirect validation of our theoretical formalism.
Resumo:
We formulate a low energy effective Hamiltonian to study superlattices in bilayer graphene (BLG) using a minimal model which supports quadratic band touching points. We show that a one dimensional (1D) periodic modulation of the chemical potential or the electric field perpendicular to the layers leads to the generation of zero-energy anisotropic massless Dirac fermions and finite energy Dirac points with tunable velocities. The electric field superlattice maps onto a coupled chain model comprised of ``topological'' edge modes. 2D superlattice modulations are shown to lead to gaps on the mini-Brillouin zone boundary but do not, for certain symmetries, gap out the quadratic band touching point. Such potential variations, induced by impurities and rippling in biased BLG, could lead to subgap modes which are argued to be relevant to understanding transport measurements.
Resumo:
The influence of polymer grafting on the phase behavior and elastic properties of two tail lipid bilayers have been investigated using dissipative particle dynamics simulations. For the range of polymer lengths studied, the L(c) to L(alpha) transition temperature is not significantly affected for grafting fractions, G(f) between 0.16 and 0.25. A decrease in the transition temperature is observed at a relatively high grafting fraction, G(f) = 0.36. At low temperatures, a small increase in the area per head group, a(h), at high G(f) leads to an increase in the chain tilt, inducing order in the bilayer and the solvent. The onset of the phase transition occurs with the nucleation of small patches of thinned membrane which grow and form continuous domains as the temperature increases. This region is the co-existence region between the L(beta)(thick) and the L(alpha)(thin) phases. The simulation results for the membrane area expansion as a function of the grafting density conform extremely well to the scalings predicted by self-consistent mean field theories. We find that the bending modulus shows a small decrease for short polymers (number of beads, N(p) = 10) and low G(f), where the influence of polymer is reduced when compared to the effect of the increased a(h). For longer polymers (N(p) > 15), the bending modulus increases monotonically with increase in grafted polymer. Using the results from mean field theory, we partition the contributions to the bending modulus from the membrane and the polymer and show that the dominant contribution to the increased bending modulus arises from the grafted polymer. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3631940]
Resumo:
We address a physically based analytical model of quantum capacitance (C-Q) in a bilayer graphene nanoribbon (BGN) under the application of an external longitudinal static bias. We demonstrate that as the gap (Delta) about the Dirac point increases, a phenomenological population inversion of the carriers in the two sets of subbands occurs. This results in a periodic and composite oscillatory behavior in the C-Q with the channel potential, which also decreases with increase in Delta. We also study the quantum size effects on the C-Q, which signatures heavy spatial oscillations due to the occurrence of van Hove singularities in the total density-of-states function of both the sets of subbands. All the mathematical results as derived in this paper converge to the corresponding well-known solution of graphene under certain limiting conditions and this compatibility is an indirect test of our theoretical formalism. (C) 2012 Elsevier By. All rights reserved.
Resumo:
Bilayer thin films of Bi/As2S3 were prepared from Bi and As2S3 by thermal evaporation technique under high vacuum. We have prepared three bilayer films of 905nm, 910nm and 915nm thickness with with As2S3 as bottom layer (900nm) and Bi as top layer (5,10,15 nm). We have compared the optical changes due to the thickness variation of Bi layer on As2S3 film. The changes were characterized by FTIR and XPS techniques.
Resumo:
Using first-principles calculations we show that the band gap of bilayer sheets of semiconducting transition-metal dichalcogenides (TMDs) can be reduced smoothly by applying vertical compressive pressure. These materials undergo a universal reversible semiconductor-to-metal (S-M) transition at a critical pressure. The S-M transition is attributed to lifting of the degeneracy of the bands at the Fermi level caused by interlayer interactions via charge transfer from the metal to the chalcogen. The S-M transition can be reproduced even after incorporating the band gap corrections using hybrid functionals and the GW method. The ability to tune the band gap of TMDs in a controlled fashion over a wide range of energy opens up the possibility for its usage in a range of applications.