237 resultados para Amplitude stabilization element
Resumo:
A new C-0 composite plate finite element based on Reddy's third order theory is used for large deformation dynamic analysis of delaminated composite plates. The inter-laminar contact is modeled with an augmented Lagrangian approach. Numerical results show that the widely used ``unconditionally stable'' beta-Newmark method presents instability problems in the transient simulation of delaminated composite plate structures with large deformation. To overcome this instability issue, an energy and momentum conserving composite implicit time integration scheme presented by Bathe and Baig is used. It is found that a proper selection of the penalty parameter is very crucial in the contact simulation. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The solvothermal reaction of CoCl(2)4H(2)O and 4,4-sulfonyldibenzoic acid (H(2)SDBA) resulted in the formation of a three-dimensional coordination polymer Co-3(C14H8O6S)(3)(DMA)(2)(MeOH)].DMA (Ia) consisting of trinuclear Co-3 oxo-cluster units. The Co-3 trimeric units are connected by SDBA(2-) anions leading to a three dimensional structure with a pcu topology. The terminal methanol molecules could be exchanged in a single crystal to single crystal (SCSC) fashion by other similar solvent molecules (ethanol, acetonitrile, water, ethyleneglycol). Magnetic studies on the parent compound, Ia, indicate antiferromagnetic interactions between the central metal atoms.
Resumo:
A 2D multi-particle model is carried out to understand the effect of microstructural variations and loading conditions on the stress evolution in Al-Si alloy under compression. A total of six parameters are varied to create 26 idealized microstructures: particle size, shape, orientation, matrix temper, strain rate, and temperature. The effect of these parameters is investigated to understand the fracture of Si particles and the yielding of Al matrix. The Si particles are modeled as a linear elastic solid and the Al matrix is modeled as an elasto-plastic solid. The results of the study demonstrate that the increase in particle size decreases the yield strength of the alloy. The particles with high aspect ratio and oriented at 0A degrees and 90A degrees to the loading axis show higher stress values. This implies that the particle shape and orientation are dominant factors in controlling particle fracture. The heat treatment of the alloy is found to increase the stress levels of both particles and matrix. Stress calculations also show that higher particle fracture and matrix yielding is expected at higher strain rate deformation. Particle fracture decreases with increase in temperature and the Al matrix plays an important role in controlling the properties of the alloy at higher temperatures. Further, this strain rate and temperature dependence is more pronounced in the heat-treated microstructure. These predictions are consistent with the experimentally observed Si particle fracture in real microstructure.
Resumo:
A wavelet spectral finite element (WSFE) model is developed for studying transient dynamics and wave propagation in adhesively bonded composite joints. The adherands are formulated as shear deformable beams using the first order shear deformation theory (FSDT) to obtain accurate results for high frequency wave propagation. Equations of motion governing wave motion in the bonded beams are derived using Hamilton's principle. The adhesive layer is modeled as a line of continuously distributed tension/compression and shear springs. Daubechies compactly supported wavelet scaling functions are used to transform the governing partial differential equations from time domain to frequency domain. The dynamic stiffness matrix is derived under the spectral finite element framework relating the nodal forces and displacements in the transformed frequency domain. Time domain results for wave propagation in a lap joint are validated with conventional finite element simulations using Abaqus. Frequency domain spectrum and dispersion relation results are presented and discussed. The developed WSFE model yields efficient and accurate analysis of wave propagation in adhesively-bonded composite joints. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This work sets forth a `hybrid' discretization scheme utilizing bivariate simplex splines as kernels in a polynomial reproducing scheme constructed over a conventional Finite Element Method (FEM)-like domain discretization based on Delaunay triangulation. Careful construction of the simplex spline knotset ensures the success of the polynomial reproduction procedure at all points in the domain of interest, a significant advancement over its precursor, the DMS-FEM. The shape functions in the proposed method inherit the global continuity (Cp-1) and local supports of the simplex splines of degree p. In the proposed scheme, the triangles comprising the domain discretization also serve as background cells for numerical integration which here are near-aligned to the supports of the shape functions (and their intersections), thus considerably ameliorating an oft-cited source of inaccuracy in the numerical integration of mesh-free (MF) schemes. Numerical experiments show the proposed method requires lower order quadrature rules for accurate evaluation of integrals in the Galerkin weak form. Numerical demonstrations of optimal convergence rates for a few test cases are given and the method is also implemented to compute crack-tip fields in a gradient-enhanced elasticity model.
Resumo:
Spectral elements are found to be extremely resourceful to study the wave propagation characteristics of structures at high frequencies. Most of the aerospace structures use honeycomb sandwich constructions. The existing spectral elements use single layer theories for a sandwich construction wherein the two face sheets vibrate together and this model is sufficient for low frequency excitations. At high frequencies, the two face sheets vibrate independently. The Extended Higher order SAndwich Plate theory (EHSaPT) is suitable for representing the independent motion of the face sheets. A 1D spectral element based on EHSaPT is developed in this work. The wave number and the wave speed characteristics are obtained using the developed spectral element. It is shown that the developed spectral element is capable of representing independent wave motions of the face sheets. The propagation speeds of a high frequency modulated pulse in the face sheets and the core of a honeycomb sandwich are demonstrated. Responses of a typical honeycomb sandwich beam to high frequency shock loads are obtained using the developed spectral element and the response match very well with the finite element results. It is shown that the developed spectral element is able to represent the flexibility of the core resulting into independent wave motions in the face sheets, for which a finite element method needs huge degrees of freedom. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
For obtaining dynamic response of structure to high frequency shock excitation spectral elements have several advantages over conventional methods. At higher frequencies transverse shear and rotary inertia have a predominant role. These are represented by the First order Shear Deformation Theory (FSDT). But not much work is reported on spectral elements with FSDT. This work presents a new spectral element based on the FSDT/Mindlin Plate Theory which is essential for wave propagation analysis of sandwich plates. Multi-transformation method is used to solve the coupled partial differential equations, i.e., Laplace transforms for temporal approximation and wavelet transforms for spatial approximation. The formulation takes into account the axial-flexure and shear coupling. The ability of the element to represent different modes of wave motion is demonstrated. Impact on the derived wave motion characteristics in the absence of the developed spectral element is discussed. The transient response using the formulated element is validated by the results obtained using Finite Element Method (FEM) which needs significant computational effort. Experimental results are provided which confirms the need to having the developed spectral element for the high frequency response of structures. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A residual based a posteriori error estimator is derived for a quadratic finite element method (FEM) for the elliptic obstacle problem. The error estimator involves various residuals consisting of the data of the problem, discrete solution and a Lagrange multiplier related to the obstacle constraint. The choice of the discrete Lagrange multiplier yields an error estimator that is comparable with the error estimator in the case of linear FEM. Further, an a priori error estimate is derived to show that the discrete Lagrange multiplier converges at the same rate as that of the discrete solution of the obstacle problem. The numerical experiments of adaptive FEM show optimal order convergence. This demonstrates that the quadratic FEM for obstacle problem exhibits optimal performance.
Resumo:
Event-triggered sampling (ETS) is a new approach towards efficient signal analysis. The goal of ETS need not be only signal reconstruction, but also direct estimation of desired information in the signal by skillful design of event. We show a promise of ETS approach towards better analysis of oscillatory non-stationary signals modeled by a time-varying sinusoid, when compared to existing uniform Nyquist-rate sampling based signal processing. We examine samples drawn using ETS, with events as zero-crossing (ZC), level-crossing (LC), and extrema, for additive in-band noise and jitter in detection instant. We find that extrema samples are robust, and also facilitate instantaneous amplitude (IA), and instantaneous frequency (IF) estimation in a time-varying sinusoid. The estimation is proposed solely using extrema samples, and a local polynomial regression based least-squares fitting approach. The proposed approach shows improvement, for noisy signals, over widely used analytic signal, energy separation, and ZC based approaches (which are based on uniform Nyquist-rate sampling based data-acquisition and processing). Further, extrema based ETS in general gives a sub-sampled representation (relative to Nyquistrate) of a time-varying sinusoid. For the same data-set size captured with extrema based ETS, and uniform sampling, the former gives much better IA and IF estimation. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Streamwise streaks, their lift-up and streak instability are integral to the bypass transition process. An experimental study has been carried out to find the effect of a mesh placed normal to the flow and at different wall-normal locations in the late stages of two transitional flows induced by free-stream turbulence (FST) and an isolated roughness element. The mesh causes an approximately 30% reduction in the free-stream velocity, and mild acceleration, irrespective of its wall-normal location. Interestingly, when located near the wall, the mesh suppresses several transitional events leading to transition delay over a large downstream distance. The transition delay is found to be mainly caused by suppression of the lift-up of the high-shear layer and its distortion, along with modification of the spanwise streaky structure to an orderly one. However, with the mesh well away from the wall, the lifted-up shear layer remains largely unaffected, and the downstream boundary layer velocity profile develops an overshoot which is found to follow a plane mixing layer type profile up to the free stream. Reynolds stresses, and the size and strength of vortices increase in this mixing layer region. This high-intensity disturbance can possibly enhance transition of the accelerated flow far downstream, although a reduction in streamwise turbulence intensity occurs over a short distance downstream of the mesh. However, the shape of the large-scale streamwise structure in the wall-normal plane is found to be more or less the same as that without the mesh.
Resumo:
Using different proxies of solar activity, we have studied the following features of the solar cycle: i) The linear correlation between the amplitude of cycle and its decay rate, ii) the linear correlation between the amplitude of cycle and the decay rate of cycle , and iii) the anti-correlation between the amplitude of cycle and the period of cycle . Features ii) and iii) are very useful because they provide precursors for future cycles. We have reproduced these features using a flux-transport dynamo model with stochastic fluctuations in the Babcock-Leighton effect and in the meridional circulation. Only when we introduce fluctuations in meridional circulation, are we able to reproduce different observed features of the solar cycle. We discuss the possible reasons for these correlations.
Resumo:
for selectively targeting cancer cells. Herein, we report the design and evolution of a new kind of carbazole-based benzimidazole dimers for their efficient telomerase inhibition activity. Spectroscopic titrations reveal the ligands high affinity toward the G4 DNA with significantly higher selectivity over duplex-DNA. The electrophoretic mobility shift assay shows that the ligands efficiently promote the formation of 04 DNA even at a lower concentration of the stabilizing K+ ions. The TRAP-LIG assay demonstrates the ligand's potential telomerase inhibition activity and also establishes that the activity proceeds via G4 DNA stabilization. An efficient nuclear internalization of the ligands in several common cancer cells (HeLa, HT1080, and A549) also enabled differentiation between normal HFF cells in co-cultures of cancer and normal ones. The ligands induce significant apoptotic response and antiproliferative activity toward cancer cells selectively when compared to the normal cells.
Resumo:
Groundwater management involves conflicting objectives as maximization of discharge contradicts the criteria of minimum pumping cost and minimum piping cost. In addition, available data contains uncertainties such as market fluctuations, variations in water levels of wells and variations of ground water policies. A fuzzy model is to be evolved to tackle the uncertainties, and a multiobjective optimization is to be conducted to simultaneously satisfy the contradicting objectives. Towards this end, a multiobjective fuzzy optimization model is evolved. To get at the upper and lower bounds of the individual objectives, particle Swarm optimization (PSO) is adopted. The analytic element method (AEM) is employed to obtain the operating potentio metric head. In this study, a multiobjective fuzzy optimization model considering three conflicting objectives is developed using PSO and AEM methods for obtaining a sustainable groundwater management policy. The developed model is applied to a case study, and it is demonstrated that the compromise solution satisfies all the objectives with adequate levels of satisfaction. Sensitivity analysis is carried out by varying the parameters, and it is shown that the effect of any such variation is quite significant. Copyright (c) 2015 John Wiley & Sons, Ltd.
Resumo:
The ultimate bearing capacity of a circular footing, placed over rock mass, is evaluated by using the lower bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization. The generalized Hoek-Brown (HB) failure criterion, but by keeping a constant value of the exponent, alpha = 0.5, was used. The failure criterion was smoothened both in the meridian and pi planes. The nonlinear optimization was carried out by employing an interior point method based on the logarithmic barrier function. The results for the obtained bearing capacity were presented in a non-dimensional form for different values of GSI, m(i), sigma(ci)/(gamma b) and q/sigma(ci). Failure patterns were also examined for a few cases. For validating the results, computations were also performed for a strip footing as well. The results obtained from the analysis compare well with the data reported in literature. Since the equilibrium conditions are precisely satisfied only at the centroids of the elements, not everywhere in the domain, the obtained lower bound solution will be approximate not true. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Although several factors have been suggested to contribute to thermostability, the stabilization strategies used by proteins are still enigmatic. Studies on a recombinant xylanase from Bacilllus sp. NG-27 (RBSX), which has the ubiquitous (beta/alpha)(8)-triosephosphate isomerase barrel fold, showed that just a single mutation, V1L, although not located in any secondary structural element, markedly enhanced the stability from 70 degrees C to 75 degrees C without loss of catalytic activity. Conversely, the V1A mutation at the same position decreased the stability of the enzyme from 70 degrees C to 68 degrees C. To gain structural insights into how a single extreme N-terminus mutation can markedly influence the thermostability of the enzyme, we determined the crystal structure of RBSX and the two mutants. On the basis of computational analysis of their crystal structures, including residue interaction networks, we established a link between N-terminal to C-terminal contacts and RBSX thermostability. Our study reveals that augmenting N-terminal to C-terminal noncovalent interactions is associated with enhancement of the stability of the enzyme. In addition, we discuss several lines of evidence supporting a connection between N-terminal to C-terminal noncovalent interactions and protein stability in different proteins. We propose that the strategy of mutations at the termini could be exploited with a view to modulate stability without compromising enzymatic activity, or in general, protein function in diverse folds where N and C termini are in close proximity. Database The coordinates of RBSX, V1A and V1L have been deposited in the PDB database under the accession numbers 4QCE, 4QCF, and 4QDM, respectively