Wave propagation analysis in adhesively bonded composite joints using the wavelet spectral finite element method


Autoria(s): Samaratunga, Dulip; Jha, Ratneshwar; Gopalakrishnan, S
Data(s)

2015

Resumo

A wavelet spectral finite element (WSFE) model is developed for studying transient dynamics and wave propagation in adhesively bonded composite joints. The adherands are formulated as shear deformable beams using the first order shear deformation theory (FSDT) to obtain accurate results for high frequency wave propagation. Equations of motion governing wave motion in the bonded beams are derived using Hamilton's principle. The adhesive layer is modeled as a line of continuously distributed tension/compression and shear springs. Daubechies compactly supported wavelet scaling functions are used to transform the governing partial differential equations from time domain to frequency domain. The dynamic stiffness matrix is derived under the spectral finite element framework relating the nodal forces and displacements in the transformed frequency domain. Time domain results for wave propagation in a lap joint are validated with conventional finite element simulations using Abaqus. Frequency domain spectrum and dispersion relation results are presented and discussed. The developed WSFE model yields efficient and accurate analysis of wave propagation in adhesively-bonded composite joints. (C) 2014 Elsevier Ltd. All rights reserved.

Formato

application/pdf

Identificador

http://eprints.iisc.ernet.in/51018/1/com_str_122_271_2015.pdf

Samaratunga, Dulip and Jha, Ratneshwar and Gopalakrishnan, S (2015) Wave propagation analysis in adhesively bonded composite joints using the wavelet spectral finite element method. In: COMPOSITE STRUCTURES, 122 . pp. 271-283.

Publicador

ELSEVIER SCI LTD

Relação

http://dx.doi.org/ 10.1016/j.compstruct.2014.11.053

http://eprints.iisc.ernet.in/51018/

Palavras-Chave #Aerospace Engineering (Formerly, Aeronautical Engineering)
Tipo

Journal Article

PeerReviewed