56 resultados para farm-gate milk
Resumo:
A new physically based classical continuous potential distribution model, particularly considering the channel center, is proposed for a short-channel undoped body symmetrical double-gate transistor. It involves a novel technique for solving the 2-D nonlinear Poisson's equation in a rectangular coordinate system, which makes the model valid from weak to strong inversion regimes and from the channel center to the surface. We demonstrated, using the proposed model, that the channel potential versus gate voltage characteristics for the devices having equal channel lengths but different thicknesses pass through a single common point (termed ``crossover point''). Based on the potential model, a new compact model for the subthreshold swing is formulated. It is shown that for the devices having very high short-channel effects (SCE), the effective subthreshold slope factor is mainly dictated by the potential close to the channel center rather than the surface. SCEs and drain-induced barrier lowering are also assessed using the proposed model and validated against a professional numerical device simulator.
Resumo:
We report a circuit technique to measure the on-chip delay of an individual logic gate (both inverting and non-inverting) in its unmodified form using digitally reconfigurable ring oscillator (RO). Solving a system of linear equations with different configuration setting of the RO gives delay of an individual gate. Experimental results from a test chip in 65nm process node show the feasibility of measuring the delay of an individual inverter to within 1pS accuracy. Delay measurements of different nominally identical inverters in close physical proximity show variations of up to 26% indicating the large impact of local or within-die variations.
Resumo:
We report the design and characterization of a circuit technique to measure the on-chip delay of an individual logic gate (both inverting and noninverting) in its unmodified form. The test circuit comprises of digitally reconfigurable ring oscillator (RO). The gate under test is embedded in each stage of the ring oscillator. A system of linear equations is then formed with different configuration settings of the RO, relating the individual gate delay to the measured period of the RO, whose solution gives the delay of the individual gates. Experimental results from a test chip in 65-nm process node show the feasibility of measuring the delay of an individual inverter to within 1 ps accuracy. Delay measurements of different nominally identicall inverters in close physical proximity show variations of up to 28% indicating the large impact of local variations. As a demonstration of this technique, we have studied delay variation with poly-pitch, length of diffusion (LOD) and different orientations of layout in silicon. The proposed technique is quite suitable for early process characterization, monitoring mature process in manufacturing and correlating model-to-hardware.
Resumo:
We report the material and electrical properties of Erbium Oxide (Er2O3) thin films grown on n-Ge (100) by RF sputtering. The properties of the films are correlated with the processing conditions. The structural characterization reveals that the films annealed at 550 degrees C, has densified as compared to the as-grown ones. Fixed oxide charges and interface charges, both of the order of 10(13)/cm(2) is observed.
Resumo:
In this work, for the first time, we present a physically based analytical threshold voltage model for omega gate silicon nanowire transistor. This model is developed for long channel cylindrical body structure. The potential distribution at each and every point of the of the wire is derived with a closed form solution of two dimensional Poisson's equation, which is then used to model the threshold voltage. Proposed model can be treated as a generalized model, which is valid for both surround gate and semi-surround gate cylindrical transistors. The accuracy of proposed model is verified for different device geometry against the results obtained from three dimensional numerical device simulators and close agreement is observed.
Resumo:
Previous techniques used for solving the 1-D Poisson equation ( PE) rigorously for long-channel asymmetric and independent double-gate (IDG) transistors result in potential models that involve multiple intercoupled implicit equations. As these equations need to be solved self-consistently, such potential models are clearly inefficient for compact modeling. This paper reports a different rigorous technique for solving the same PE by which one can obtain the potential profile of a generalized IDG transistor that involves a single implicit equation. The proposed Poisson solution is shown to be computationally more efficient for circuit simulation than the previous solutions.
Resumo:
We propose a compact model which predicts the channel charge density and the drain current which match quite closely with the numerical solution obtained from the Full-Band structure approach. We show that, with this compact model, the channel charge density can be predicted by taking the capacitance based on the physical oxide thickness, as opposed to C-eff, which needs to be taken when using the classical solution.
Resumo:
This correspondence aims at reporting the results of an analysis carried out to find the effect of a linear potential variation on the gate of an FET.
Resumo:
In this work a physically based analytical quantum threshold voltage model for the triple gate long channel metal oxide semiconductor field effect transistor is developed The proposed model is based on the analytical solution of two-dimensional Poisson and two-dimensional Schrodinger equation Proposed model is extended for short channel devices by including semi-empirical correction The impact of effective mass variation with film thicknesses is also discussed using the proposed model All models are fully validated against the professional numerical device simulator for a wide range of device geometries (C) 2010 Elsevier Ltd All rights reserved
Resumo:
A new deep level transient spectroscopy technique is suggested which allows the deep level parameters to be obtained from a single temperature scan. Using large ratio t2/t1 of the measurement gate positions t1 and t2 and analyzing the steep high‐temperature side of the peak, it is demonstrated that the deep level activation energy can be determined with high accuracy.
Resumo:
We report experimental observations of a new mechanism of charge transport in two-dimensional electron systems (2DESs) in the presence of strong Coulomb interaction and disorder. We show that at low enough temperature the conductivity tends to zero at a nonzero carrier density, which represents the point of essential singularity in a Berezinskii-Kosterlitz-Thouless-like transition. Our experiments with many 2DESs in GaAs/AlGaAs heterostructures suggest that the charge transport at low carrier densities is due to the melting of an underlying ordered ground state through proliferation of topological defects. Independent measurement of low-frequency conductivity noise supports this scenario.
Resumo:
In this paper, a physically based analytical quantum linear threshold voltage model for short channel quad gate MOSFETs is developed. The proposed model, which is suitable for circuit simulation, is based on the analytical solution of 3-D Poisson and 2-D Schrodinger equation. Proposed model is fully validated against the professional numerical device simulator for a wide range of device geometries and also used to analyze the effect of geometry variation on the threshold voltage.
Resumo:
In this work we explore the application of wireless sensor technologies for the benefit of small and marginal farmers in semi-arid regions. The focus in this paper is to discuss the merits and demerits of data gathering & relay paradigms that collect localized data over a wide area. The data gathered includes soil moisture, temperature, pressure, rain data and humidity. The challenge to technology intervention comes mainly due to two reasons: (a) Farmers in general are interested in crop yield specific to their piece of land. This is because soil texture can vary rapidly over small regions. (b) Due to a high run-off, the soil moisture retention can vary from region to region depending on the topology of the farm. Both these reasons alter the needs drastically. Additionally, small and marginal farms can be sandwiched between rich farm lands. The village has very little access to grid power. Power cuts can extend up to 12 hours in a day and upto 3 or 4 days during some months in the year. In this paper, we discuss 3 technology paradigms for data relaying. These include Wi-Fi (Wireless Fidelity), GPRS (General Packet Radio Service) and DTN (Delay and Disruption Tolerant Network) technologies. We detail the merits and demerits of each of these solutions and provide our final recommendations. The project site is a village called Chennakesavapura in the state of Karnataka, India.
Resumo:
Experimental realization of quantum information processing in the field of nuclear magnetic resonance (NMR) has been well established. Implementation of conditional phase-shift gate has been a significant step, which has lead to realization of important algorithms such as Grover's search algorithm and quantum Fourier transform. This gate has so far been implemented in NMR by using coupling evolution method. We demonstrate here the implementation of the conditional phase-shift gate using transition selective pulses. As an application of the gate, we demonstrate Grover's search algorithm and quantum Fourier transform by simulations and experiments using transition selective pulses. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
The production of rainfed crops in semi-arid tropics exhibits large variation in response to the variation in seasonal rainfall. There are several farm-level decisions such as the choice of cropping pattern, whether to invest in fertilizers, pesticides etc., the choice of the period for planting, plant population density etc. for which the appropriate choice (associated with maximum production or minimum risk) depends upon the nature of the rainfall variability or the prediction for a specific year. In this paper, we have addressed the problem of identifying the appropriate strategies for cultivation of rainfed groundnut in the Anantapur region in a semi-arid part of the Indian peninsula. The approach developed involves participatory research with active collaboration with farmers, so that the problems with perceived need are addressed with the modern tools and data sets available. Given the large spatial variation of climate and soil, the appropriate strategies are necessarily location specific. With the approach adopted, it is possible to tap the detailed location specific knowledge of the complex rainfed ecosystem and gain an insight into the variety of options of land use and management practices available to each category of stakeholders. We believe such a participatory approach is essential for identifying strategies that have a favourable cost-benefit ratio over the region considered and hence are associated with a high chance of acceptance by the stakeholders. (C) 2002 Elsevier Science Ltd. All rights reserved.