13 resultados para polarization interferometry

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rab8 and its interacting proteins as regulators of cell polarization During the development of a multi-cellular organism, progenitor cells have to divide and migrate appropriately as well as organize their differentiation with one another, in order to produce a viable embryo. To divide, differentiate and migrate cells have to undergo polarization, a process where internal and external components such as actin, microtubules and adhesion receptors are reorganized to produce a cell that is asymmetric, with functionally different surfaces. Also in the adult organism there is a continuous need for these processes, as cells need to migrate in response to tissue damage and to fight infection. Improper regulation of cell proliferation and migration can conversely lead to disease such as cancer. GTP-binding proteins function as molecular switches by cycling between a GTP-bound (active) conformation and a GDP-bound (inactive) conformation. The Ras super-family of small GTPases are found in all eukaryotic cells. They can be functionally divided into five subfamilies. The Ras family members mainly regulate gene expression, controlling cell proliferation and differentiation. Ras was in fact the first human oncogene to be characterized, and as much as 30% of all human tumors may be directly or indirectly caused by mutations of Ras molecules The Rho family members mainly regulate cytoskeletal reorganization. Arf proteins are known to regulate vesicle budding and Rab proteins regulate vesicular transport. Ran regulates nuclear transport as well as microtubule organization during mitosis. The focus of the thesis of Katarina Hattula, is on Rab8, a small GTPase of the Rab family. Activated Rab8 has previously been shown to induce the formation of new surface extensions, reorganizing both actin and microtubules, and to have a role in directed membrane transport to cell surfaces. However, the exact membrane route it regulates has remained elusive. In the thesis three novel interactors of Rab8 are presented. Rabin8 is a Rab8-specific GEF that localizes to vesicles where it presumably recruits and activates its target Rab8. Its expression in cells leads to remodelling of actin and the formation of polarized cell surface domains. Optineurin, known to be associated with a leading cause of blindness in humans (open-angle glaucoma), is shown to interact specifically with GTP-bound Rab8. Rab8 binds to an amino-terminal region and interestingly, the Huntingtin protein binds a carboxy-terminal region of optineurin. (Aberrant Huntingtin protein is known to be the cause Huntington s disease in humans.) Co-expression of Huntingtin and optineurin enhanced the recruitment of Huntingtin to Rab8-positive vesicular structures. Furthermore, optineurin promoted cell polarization in a similar way to Rab8. A third novel interactor of Rab8 presented in this thesis is JFC1, a member of the synaptogamin-like protein (Slp) family. JFC1 interacts with Rab8 specifically in its GTP-bound form, co-localizes with endogenous Rab8 on tubular and vesicular structures, and is probably involved in controlling Rab8 membrane dynamics. Rab8 is in this thesis work clearly shown to have a strong effect on cell shape. Blocking Rab8 activity by expression of Rab8 RNAi, or by expressing the dominant negative Rab8 (T22N) mutant leads to loss of cell polarity. Conversely, cells expressing the constitutively active Rab8 (Q67L) mutant exhibit a strongly polarized phenotype. Experiments in live cells show that Rab8 is associated with macropinosomes generated at ruffling areas of the membrane. These macropinosomes fuse with or transform into tubules that move toward the cell centre, from where they are recycled back to the leading edge to participate in protrusion formation. The biogenesis of these tubules is shown to be dependent on both actin and microtubule dynamics. The Rab8-specific membrane route studied contained several markers known to be internalized and recycled (1 integrin, transferrin, transferrin receptor, cholera toxin B subunit (CTxB), and major histocompatibility complex class I protein (MHCI)). Co-expression studies revealed that Rab8 localization overlaps with that of Rab11 and Arf6. Rab8 is furthermore clearly functionally linked to Arf6. The data presented in this thesis strongly suggests a role for Rab8 as a regulator for a recycling compartment, which is involved in providing structural and regulatory components to the leading edge to participate in protrusion formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report measurements of the polarization of W bosons from top-quark decays using 2.7 fb^-1 of ppbar collisions collected by the CDF II detector. Assuming a top-quark mass of 175 GeV/c^2, three measurements are performed. A simultaneous measurement of the fraction of longitudinal (f_0) and right-handed (f_+) W bosons yields the model-independent results f_0 = 0.88 \pm 0.11 (stat) \pm 0.06 (syst) and f_+ = -0.15 \pm 0.07 (stat) \pm 0.06 (syst) with a correlation coefficient of -0.59. A measurement of f_0 (f_+) constraining f_+ (f_0) to its standard model value of 0.0 (0.7) yields f_0 = 0.70 \pm 0.07 (stat) \pm 0.04 (syst) (f_+ = -0.01 \pm 0.02 (stat) \pm 0.05 (syst)). All these results are consistent with standard model expectations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effects of new physics scenarios containing a high mass vector resonance on top pair production at the LHC, using the polarization of the produced top. In particular we use kinematic distributions of the secondary lepton coming from top decay, which depends on top polarization, as it has been shown that the angular distribution of the decay lepton is insensitive to the anomalous tbW vertex and hence is a pure probe of new physics in top quark production. Spin sensitive variables involving the decay lepton are used to probe top polarization. Some sensitivity is found for the new couplings of the top.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In remote-sensing studies, particles that are comparable to the wavelength exhibit characteristic features in electromagnetic scattering, especially in the degree of linear polarization. These features vary with the physical properties of the particles, such as shape, size, refractive index, and orientation. In the thesis, the direct problem of computing the unknown scattered quantities using the known properties of the particles and the incident radiation is solved at both optical and radar spectral regions in a unique way. The internal electromagnetic fields of wavelength-scale particles are analyzed by using both novel and established methods to show how the internal fields are related to the scattered fields in the far zone. This is achieved by using the tools and methods that were developed specifically to reveal the internal field structure of particles and to study the mechanisms that relate the structure to the scattering characteristics of those particles. It is shown that, for spherical particles, the internal field is a combination of a forward propagating wave with the apparent wavelength determined by the refractive index of the particle, and a standing wave pattern with the apparent wavelength the same as for the incident wave. Due to the surface curvature and dielectric nature of the particle, the incident wave front undergoes a phase shift, and the resulting internal wave is focused mostly at the forward part of the particle similar to an optical lens. This focusing is also seen for irregular particles. It is concluded that, for both spherical and nonspherical particles, the interference at the far field between the partial waves that originate from these concentrated areas in the particle interior, is responsible for the specific polarization features that are common for wavelength-scale particles, such as negative values and local extrema in the degree of linear polarization, asymmetry of the phase function, and enhancement of intensity near the backscattering direction. The papers presented in this thesis solve the direct problem for particles with both simple and irregular shapes to demonstrate that these interference mechanisms are common for all dielectric wavelength-scale particles. Furthermore, it is shown that these mechanisms can be applied to both regolith particles in the optical wavelengths and hydrometeors at microwave frequencies. An advantage from this kind of study is that it does not matter whether the observation is active (e.g., polarimetric radar) or passive (e.g., optical telescope). In both cases, the internal field is computed for two mutually perpendicular incident polarizations, so that the polarization characteristics can then be analyzed according to the relation between these fields and the scattered far field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern ryijys, fabric by the yard and handicrafts. Finnish textile art and modernizing applied art during the inter-war years Textile art was in the 1920s and 1930s in the front rank of Finnish applied art and design. Modern ryijys, tapestries and fabrics by the yard by contemporary textile artists were on show in Finland and abroad. Textile art had also become interesting commercially, especially in interior textiles of modern homes. The research uses sources of the Ornamo Association of Decorative Artists, for example the Ornamo year books published from 1927, the Finnish Society of Crafts and Design and the country s only school of applied arts, the Central School of Arts and Crafts and the Museum of Applied Arts maintained by the society and also the national specialist organisation the Friends of Finnish Handicraft. It also refers to the magazines Käsiteollisuus and Kotiliesi. The art historical dissertation studies the renaissance of weaving art of the inter-war years in Finland. It problematizes the relation of the succesfull and appreciated textile art to the concept of breakthrough of Modernism (Functionalism). With the material from textile artists activities it questions the prevailing idea of slow modernization of Finnish applied art and design and challenges the polarization of craft and industry in the discourses of Modernisms of design. The public discussions about modernization of design and applied art where textile art and especially the ryijy got sometimes into difficult positions are interpreted as power struggles. After taking independence in 1917 the Finnish tradition of ryijy rugs was set as a symbol of the original culture of the young nation. The research studies the development of the so called art ryijy and the notions and meanings of hand weaving in the national context and also in relation to contemporary events in international applied art and design. It highlights the continuity of hand crafted production of textiles and the strong position of textile artists working in this field. The research opens new perspectives to Finnish textile artists by showing their activities as entrepreneurs in their own weaving studios or design studios and referring to their many relations and functions as pattern designers and educators in the growing handicraft industries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From the Soviet point of view the actual substance of Soviet-Finnish relations in the second half of 1950s clearly differed from the contemporary and later public image, based on friendship and confidence rhetoric. As the polarization between the right and the left became more underlined in Finland in the latter half of the 1950s, the criticism towards the Soviet Union became stronger, and the USSR feared that this development would have influence on Finnish foreign policy. From the Soviet point of view, the security commitments of FCMA-treaty needed additional guarantees through control of Finnish domestic politics and economic relations, especially during international crises. In relation to Scandinavia, Finland was, from the Soviet point of view, the model country of friendship or neutrality policy. The influence of the Second Berlin Crisis or the Soviet-Finnish Night Frost Crisis in 1958-1959 to Soviet policy towards Scandinavia needs to be observed from this point of view. The Soviet Union used Finland as a tool, in agreement with Finnish highest political leadership, for weakening of the NATO membership of Norway and Denmark, and for maintaining Swedish non-alliance. The Finnish interest to EFTA membership in the summer of 1959, at the same time with the Scandinavian countries, seems to have caused a panic reaction in the USSR, as the Soviets feared that these economic arrangements would reverse the political advantages the country had received in Finland after the Night Frost Crisis. Together with history of events, this study observes the interaction of practical interests and ideologies, both in individuals and in decision-making organizations. The necessary social and ideological reforms in the Soviet Union after 1956 had influence both on the legitimacy of the regime, and led to contradictions in the argumentation of Soviet foreign policy. This was observed both in the own camp as well as in the West. Also, in Finland a breakthrough took place in the late 1950's: as the so-called counter reaction lost to the K-line, "a special relationship" developed with the Soviet Union. As a consequence of the Night Frost Crisis the Soviet relationship became a factor decisively defining the limits of domestic politics in Finland, a part of Finnish domestic political argumentation. Understood from this basis, finlandization is not, even from the viewpoint of international relations, a special case, but a domestic political culture formed by the relationship between a dominant state, a superpower, and a subordinate state, Finland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type 1 diabetes (T1D) is considered to be an autoimmune disease. In T1D insulin producing pancreatic β cells are destroyed. The disease process begins years before the clinical diagnosis of T1D. During the pathogenesis of T1D, pancreatic islets are infiltrated by cells of the immune system and T-lymphocytes are considered to be the main mediators of the β-cell destruction. In children with an active β-cell destruction process, autoantibodies against β-cell antigens appear in the blood. Individuals at increased risk of developing T1D can often be identified by detecting serum autoantibodies against β-cell antigens. Immunological aberrancies associated with T1D are related to defects in the polarization of T cells and in the function of regulatory mechanisms. T1D has been considered as an organ-specific autoimmune disease mediated by uncontrolled Th1-responses. In human T1D, the evidence for the role of over-expression of cytokines promoting cytotoxicity is controversial. For the past 15 years, regulatory T cells (Tregs) have been recognized as having a key role in the initiation and maintenance of tolerance, limiting harmful autoantigen-specific inflammation processes. It is possible that, if regulatory mechanisms fail to be initiated, the subtle inflammation targeting β cells lead to insulitis and eventually to overt T1D in some individuals. In the present thesis, we studied the induction of Tregs during the generation of T-cell responses in T1D. The results suggest that the generation of regulatory mechanisms and effector mechanisms upon T-cell activation is aberrant in children with T1D. In our studies, an in vitro cytotoxic environment inhibited the induction of genes associated with regulatory functions upon T-cell activation. We also found T1D patients to have an impaired cytotoxic response against coxsackievirus B4. Ineffective virus clearance may increase the apoptosis of β cells, and thus the risk of β-cell specific autoimmunity, due to the increased presentation of β-cell-derived peptides by APCs to T cells in pancreatic lymph nodes. Recently, a novel T helper cell subset called Th17 has been discovered. Animal models have associated Th17 cells and especially co-producers of IL-17 and IFN-γ with the pathogenesis of T1D. We aimed to characterize the role of Th17 immunity in human T1D. We demonstrated IL-17 activation to be a major alteration in T1D patients in comparison to healthy children. Moreover, alterations related to the FOXP3-mediated regulatory mechanisms were associated with the IL-17 up-regulation seen in T1D patients. These findings may have therapeutic implications for the treatment and prevention of T1D.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interstellar clouds are not featureless, but show quite complex internal structures of filaments and clumps when observed with high enough resolution. These structures have been generated by 1) turbulent motions driven mainly by supernovae, 2) magnetic fields working on the ions and, through neutral-ion collisions, on neutral gas as well, and 3) self-gravity pulling a dense clump together to form a new star. The study of the cloud structure gives us information on the relative importance of each of these mechanisms, and helps us to gain a better understanding of the details of the star formation process. Interstellar dust is often used as a tracer for the interstellar gas which forms the bulk of the interstellar matter. Some of the methods that are used to derive the column density are summarized in this thesis. A new method, which uses the scattered light to map the column density in large fields with high spatial resolution, is introduced. This thesis also takes a look at the grain alignment with respect to the magnetic fields. The aligned grains give rise to the polarization of starlight and dust emission, thus revealing the magnetic field. The alignment mechanisms have been debated for the last half century. The strongest candidate at present is the radiative torques mechanism. In the first four papers included in this thesis, the scattered light method of column density estimation is formulated, tested in simulations, and finally used to obtain a column density map from observations. They demonstrate that the scattered light method is a very useful and reliable tool in column density estimation, and is able to provide higher resolution than the near-infrared color excess method. These two methods are complementary. The derived column density maps are also used to gain information on the dust emissivity within the observed cloud. The two final papers present simulations of polarized thermal dust emission assuming that the alignment happens by the radiative torques mechanism. We show that the radiative torques can explain the observed decline of the polarization degree towards dense cores. Furthermore, the results indicate that the dense cores themselves might not contribute significantly to the polarized signal, and hence one needs to be careful when interpreting the observations and deriving the magnetic field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis has two items: biofouling and antifouling in paper industry. Biofouling means unwanted microbial accumulation on surfaces causing e.g. disturbances in industrial processes, contamination of medical devices or of water distribution networks. Antifouling focuses on preventing accumulation of the biofilms in undesired places. Deinococcus geothermalis is a pink-pigmented, thermophilic bacterium, and extremely resistant towards radiation, UV-light and desiccation and known as a biofouler of paper machines forming firm and biocide resistant biofilms on the stainless steel surfaces. The compact structure of biofilm microcolonies of D. geothermalis E50051 and the adhesion into abiotic surfaces were investigated by confocal laser scanning microscope combined with carbohydrate specific fluorescently labelled lectins. The extracellular polymeric substance in D. geothermalis microcolonies was found to be a composite of at least five different glycoconjugates contributing to adhesion, functioning as structural elements, putative storages for water, gliding motility and likely also to protection. The adhesion threads that D. geothermalis seems to use to adhere on an abiotic surface and to anchor itself to the neighbouring cells were shown to be protein. Four protein components of type IV pilin were identified. In addition, the lectin staining showed that the adhesion threads were covered with galactose containing glycoconjugates. The threads were not exposed on planktic cells indicating their primary role in adhesion and in biofilm formation. I investigated by quantitative real-time PCR the presence of D. geothermalis in biofilms, deposits, process waters and paper end products from 24 paper and board mills. The primers designed for doing this were targeted to the 16S rRNA gene of D. geothermalis. We found D. geothermalis DNA from 9 machines, in total 16 samples of the 120 mill samples searched for. The total bacterial content varied in those samples between 107 to 3 ×1010 16S rRNA gene copies g-1. The proportion of D. geothermalis in those same samples was minor, 0.03 1.3 % of the total bacterial content. Nevertheless D. geothermalis may endanger paper quality as its DNA was shown in an end product. As an antifouling method towards biofilms we studied the electrochemical polarization. Two novel instruments were designed for this work. The double biofilm analyzer was designed for search for a polarization program that would eradicate D. geothermalis biofilm or from stainless steel under conditions simulating paper mill environment. The Radbox instrument was designed to study the generation of reactive oxygen species during the polarization that was effective in antifouling of D. geothermalis. We found that cathodic character and a pulsed mode of polarization were required to achieve detaching D. geothermalis biofilm from stainless steel. We also found that the efficiency of polarization was good on submerged, and poor on splash area biofilms. By adding oxidative biocides, bromochloro-5,5-dimethylhydantoin, 2,2-dibromo-2-cyanodiacetamide or peracetic acid gave additive value with polarization, being active on splash area biofilms. We showed that the cathodically weighted pulsed polarization that was active in removing D. geothermalis was also effective in generation of reactive oxygen species. It is possible that the antifouling effect relied on the generation of ROS on the polarized steel surfaces. Antifouling method successful towards D. geothermalis that is a tenacious biofouler and possesses a high tolerance to oxidative stressors could be functional also towards other biofoulers and applicable in wet industrial processes elsewhere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

QCD factorization in the Bjorken limit allows to separate the long-distance physics from the hard subprocess. At leading twist, only one parton in each hadron is coherent with the hard subprocess. Higher twist effects increase as one of the active partons carries most of the longitudinal momentum of the hadron, x -> 1. In the Drell-Yan process \pi N -> \mu^- mu^+ + X, the polarization of the virtual photon is observed to change to longitudinal when the photon carries x_F > 0.6 of the pion. I define and study the Berger-Brodsky limit of Q^2 -> \infty with Q^2(1-x) fixed. A new kind of factorization holds in the Drell-Yan process in this limit, in which both pion valence quarks are coherent with the hard subprocess, the virtual photon is longitudinal rather than transverse, and the cross section is proportional to a multiparton distribution. Generalized parton distributions contain information on the longitudinal momentum and transverse position densities of partons in a hadron. Transverse charge densities are Fourier transforms of the electromagnetic form factors. I discuss the application of these methods to the QED electron, studying the form factors, charge densities and spin distributions of the leading order |e\gamma> Fock state in impact parameter and longitudinal momentum space. I show how the transverse shape of any virtual photon induced process, \gamma^*(q)+i -> f, may be measured. Qualitative arguments concerning the size of such transitions have been previously made in the literature, but without a precise analysis. Properly defined, the amplitudes and the cross section in impact parameter space provide information on the transverse shape of the transition process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study analyzes the effort to build political legitimacy in the Republic of Turkey by ex-ploring a group of influential texts produced by Kemalist writers. The study explores how the Kemalist regime reproduced certain long-lasting enlightenment meta-narrative in its effort to build political legitimacy. Central in this process was a hegemonic representation of history, namely the interpretation of the Anatolian Resistance Struggle of 1919 1922 as a Turkish Revolution executing the enlightenment in the Turkish nation-state. The method employed in the study is contextualizing narratological analysis. The Kemalist texts are analyzed with a repertoire of concepts originally developed in the theory of narra-tive. By bringing these concepts together with epistemological foundations of historical sciences, the study creates a theoretical frame inside of which it is possible to highlight how initially very controversial historical representations in the end manage to construct long-lasting, emotionally and intellectually convincing bases of national identity for the secular middle classes in Turkey. The two most important explanatory concepts in this sense are di-egesis and implied reader. The diegesis refers to the ability of narrative representation to create an inherently credible story-world that works as the basis of national community. The implied reader refers to the process where a certain hegemonic narrative creates a formula of identification and a position through which any individual real-world reader of a story can step inside the narrative story-world and identify oneself as one of us of the national narra-tive. The study demonstrates that the Kemalist enlightenment meta-narrative created a group of narrative accruals which enabled generations of secular middle classes to internalize Kemalist ideology. In this sense, the narrative in question has not only worked as a tool utilized by the so-called Kemalist state-elite to justify its leadership, but has been internalized by various groups in Turkey, working as their genuine world-view. It is shown in the study that secular-ism must be seen as the core ingredient of these groups national identity. The study proposes that the enlightenment narrative reproduced in the Kemalist ideology had its origin in a simi-lar totalizing cultural narrative created in and for Europe. Currently this enlightenment project is challenged in Turkey by those who are in an attempt to give religion a greater role in Turkish society. The study argues that the enduring practice of legitimizing political power through the enlightenment meta-narrative has not only become a major factor contributing to social polarization in Turkey, but has also, in contradiction to the very real potentials for crit-ical approaches inherent in the Enlightenment tradition, crucially restricted the development of critical and rational modes of thinking in the Republic of Turkey.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The equilibrium between cell proliferation, differentiation, and apoptosis is crucial for maintaining homeostasis in epithelial tissues. In order for the epithelium to function properly, individual cells must gain normal structural and functional polarity. The junctional proteins have an important role both in binding the cells together and in taking part in cell signaling. Cadherins form adherens junctions. Cadherins initiate the polarization process by first recognizing and binding the neighboring cells together, and then guiding the formation of tight junctions. Tight junctions form a barrier in dividing the plasma membranes to apical and basolateral membrane domains. In glandular tissues, single layered and polarized epithelium is folded into tubes or spheres, in which the basal side of the epithelial layer faces the outer basal membrane, and the apical side the lumen. In carcinogenesis, the differentiated architecture of an epithelial layer is disrupted. Filling of the luminal space is a hallmark of early epithelial tumors in tubular and glandular structures. In order for the transformed tumor cells to populate the lumen, enhanced proliferation as well as inhibition of apoptosis is required. Most advances in cancer biology have been achieved by using two-dimensional (2D) cell culture models, in which the cells are cultured on flat surfaces as monolayers. However, the 2D cultures are limited in their capacity to recapitulate the structural and functional features of tubular structures and to represent cell growth and differentiation in vivo. The development of three-dimensional (3D) cell culture methods enables the cells to grow and to be studied in a more natural environment. Despite the wide use of 2D cell culture models and the development of novel 3D culture methods, it is not clear how the change of the dimensionality of culture conditions alters the polarization and transformation process and the molecular mechanisms behind them. Src is a well-known oncogene. It is found in focal and adherens junctions of cultured cells. Active src disrupts cell-cell junctions and interferes with cell-matrix binding. It promotes cell motility and survival. Src transformation in 2D disrupts adherens junctions and the fibroblastic phenotype of the cells. In 3D, the adherens junctions are weakened, and in glandular structures, the lumen is filled with nonpolarized vital cells. Madin-Darby canine kidney (MDCK) cells are an epithelial cell type commonly used as a model for cell polarization. Its-src-transformed variants are useful model systems for analyzing the changes in cell morphology, and they play a role in src-induced malignant transformation. This study investigates src-transformed cells in 3D cell cultures as a model for malignant transformation. The following questions were posed. Firstly: What is the role of the composition and stiffness of the extracellular matrix (ECM) on the polarization and transformation of ts v-src MDCK cells in 3D cell cultures? Secondly: How do the culture conditions affect gene expression? What is the effect of v-src transformation in 2D and in 3D cell models? How does the shift from 2D to 3D affect cell polarity and gene expression? Thirdly: What is the role of survivin and its regulator phosphatase and tensin homolog protein (PTEN) in cell polarization and transformation, and in determining cell fate? How does their expression correlate with impaired mitochondrial function in transformed cells? In order to answer the above questions, novel methods of culturing and monitoring cells had to be created: novel 3D methods of culturing epithelial cells were engineered, enabling real time monitoring of a polarization and transformation process, and functional testing of 3D cell cultures. Novel 3D cell culture models and imaging techniques were created for the study. Attention was focused especially on confocal microscopy and live-cell imaging. Src-transformation disturbed the polarization of the epithelium by disrupting cell adhesion, and sensitized the cells to their environment. With active src, the morphology of the cell cluster depended on the composition and stiffness of the matrix. Gene expression studies revealed a broader impact of src transformation than mere continuous activity of src-kinase. In 2D cultures, src transformation altered the expression of immunological, actin cytoskeleton and extracellular matrix (ECM). In 3D, the genes regulating cell division, inhibition of apoptosis, cell metabolism, mitochondrial function, actin cytoskeleton and mechano-sensing proteins were altered. Surprisingly, changing the culture conditions from 2D to 3D affected also gene expression considerably. The microarray hit survivin, an inhibitor of apoptosis, played a crucial role in the survival and proliferation of src-transformed cells.