15 resultados para morphological plasticity

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the architecture of the Byzantine capital spread to the Mediterranean provinces with travelling masters and architects. In this study the architecture of the Constantinopolitan School has been detected on the basis of the typology of churches, completed by certain morphological aspects when necessary. The impact of the Constantinopolitan workshops appears to have been more important than previously realized. This research revealed that the Constantinopolitan composite domed inscribed-cross type or cross-in-square spread everywhere to the Balkans and it was assumed soon by the local schools of architecture. In addition, two novel variants were invented on the basis of this model: the semi-composite type and the so-called Athonite type. In the latter variant lateral conches, choroi, were added for liturgical reasons. Instead, the origin of the domed ambulatory church was partly provincial. One result of this study is that the origin of the Middle Byzantine domed octagonal types was traced to Constantinople. This is attested on the basis of the archaeological evidence. Also some other architectural elements that have not been preserved in the destroyed capital have survived at the provincial level: the domed hexagonal type, the multi-domed superstructure, the pseudo-octagon and the narthex known as the lite. The Constantinopolitan architecture during the period in question was based on the Early Christian and Late Antique forms, practices and innovations and this also emerges at the provincial level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell adhesion and extracellular matrix (ECM) molecules play a significant role in neuronal plasticity both during development and in the adult. Plastic changes in which ECM components are implicated may underlie important nervous system functions, such as memory formation and learning. Heparin-binding growthassociated molecule (HB-GAM, also known as pleiotrophin), is an ECM protein involved in neurite outgrowth, axonal guidance and synaptogenesis during perinatal period. In the adult brain HB-GAM expression is restricted to the regions which display pronounced synaptic plasticity (e.g., hippocampal CA3-CA1 areas, cerebral cortex laminae II-IV, olfactory bulb). Expression of HB-GAM is regulated in an activity-dependent manner and is also induced in response to neuronal injury. In this work mutant mice were used to study the in vivo function of HB-GAM and its receptor syndecan-3 in hippocampal synaptic plasticity and in hippocampus-dependent behavioral tasks. Phenotypic analysis of HBGAM null mutants and mice overexpressing HB-GAM revealed that opposite genetic manipulations result in reverse changes in synaptic plasticity as well as behavior in the mutants. Electrophysiological recordings showed that mice lacking HB-GAM have an increased level of long-term potentiation (LTP) in the area CA1 of hippocampus and impaired spatial learning, whereas animals with enhanced level of HB-GAM expression have attenuated LTP, but outperformed their wild-type controls in spatial learning. It was also found that GABA(A) receptor-mediated synaptic transmission is altered in the transgenic mice overexpressing HB-GAM. The results suggest that these animals have accentuated hippocampal GABAergic inhibition, which may contribute to the altered glutamatergic synaptic plasticity. Structural studies of HB-GAM demonstrated that this protein belongs to the thrombospondin type I repeat (TSR) superfamily and contains two β-sheet domains connected by a flexible linker. It was found that didomain structure is necessary for biological activity of HB-GAM and electrophysiological phenotype displayed by the HB-GAM mutants. The individual domains displayed weaker binding to heparan sulfate and failed to promote neurite outgrowth as well as affect hippocampal LTP. Effects of HB-GAM on hippocampal synaptic plasticity are believed to be mediated by one of its (co-)receptor molecules, namely syndecan-3. In support of that, HB-GAM did not attenuate LTP in mice deficient in syndecan-3 as it did in wild-type controls. In addition, syndecan-3 knockout mice displayed electrophysiological and behavioral phenotype similar to that of HB-GAM knockouts (i.e. enhanced LTP and impaired learning in Morris water-maze). Thus HB-GAM and syndecan-3 are important modulators of synaptic plasticity in hippocampus and play a role in regulation of learning-related behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal plasticity is a well characterized phenomenon in the developing and adult brain. It refers to capasity of a single neuron to modify morphology, synaptic connections and activity. Neuronal connections and capacity for plastic events are compromised in several pathological disorders, such as major depression. In addition, neuronal atrophy has been reported in depressive patients. Neurotrophins are a group of secretory proteins functionally classified as neuronal survival factors. Neurotrophins, especially brain derived neurotrophic factor (BDNF), have also been associated with promoting neuronal plasticity in dysfunctional neuronal networks. Chronic antidepressant treatment increases plastic events including neurogenesis and arborization and branching of neurites in distinct brain areas, such as the hippocampus. One suggested mode of action is where the antidepressants elevate the synaptic levels of BDNF thus further activating several signaling cascades via trkB-receptor. In our studies we have tried to clarify the mechanisms of action for antidepressants and to resolve the role of BDNF in this process. We found that chronic antidepressant treatment increases amount of markers of neuronal plasticity in both hippocampus and in the medial prefrontal cortex, both of which are closely linked to the etiology of major depression. Secondary actions of antidepressants include rapid activation of the trkB receptor followed by a phosphorylation of transcription factor CREB. In addition, activation of CREB by phosphorylation appears responsible for the regulation of the expression of the BDNF gene. Using transgenic mice we found that BDNF-induced trkB-mediated signaling proved crucial for the behavioral effects of antidepressants in the forced swimming test and for the survival of newly-born neurons in the adult hippocampus. Antidepressants not only increased neurogenesis in the adult hippocampus but also elevated the turnover of hippocampal neurons. During these studies we also discovered that another trkB ligand, NT-4, is involved in morphine-mediated anti-nociception and tolerance. These results present a novel role for trkB-mediated signaling in plastic events present in the opioid system. This thesis evaluates neuronal plasticity and trkB as a target for future antidepressant treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taxonomic relationships of the liverwort genus Herbertus in Asia were examined. In addition, the phylogeny of the family Herbertaceae and its close relatives was investigated and analyses conducted of higher level relationships within the entire liverwort phylum. Species of Herbertus show great plasticity in various morphological characters, resulted in a large number of described species. This study was the first comprehensive revision of Asian Herbertus, with 12 species recognized for the continent. Eleven names were reduced to synonymy under earlier described species, and one species was excluded from the genus. Herbertus buchii Juslén was described as a new species. Phylogenetic analyses based on both molecular and morphological characters resolved the families Vetaformaceae, Lepicoleaceae, and Herbertaceae (including Mastigophoraceae) as a monophyletic entity. This clade is among the most derived groups within the leafy liverworts and comprises mostly isophyllous plants, all of which have bracteolar antheridia. The relationships of Mastigophoraceae have formerly been controversial. My results confirm the view that this family is closely related to Herbertaceae, Lepicoleaceae, and Vetaformaceae. In the proposed new classification Mastigophoraceae is included in Herbertaceae. Phylogenetic relationships within the liverworts were reconstructed using both chloroplast and nuclear sequences as well as morphological characters. These analyses were the most comprehensive to date at the time of publication. Previously it was believed that liverworts had a common ancestor with an erect, radial gametophyte and a tetrahedral apical cell. The leafy liverworts were arranged based on the assumption that similar structures had repeatedly developed in many different suborders, with evolution proceeding from erect and isophyllous to creeping and anisophyllous plants. The complex thalloid liverworts were assumed to be the most derived group. By contrast, our studies resolved a clade comprising Treubia and Haplomitrium as the earliest extant liverwort lineage. According to our results the complex thalloids are also an early diverging lineage, and the simple thalloids, traditionally classified together, are a paraphyletic group. Within leafy liverworts, the hypothesis of repeated evolution from isophyllous to anisophyllous plants based on the assumption of a basal unresolved polytomy was rejected. Fundamentally, the leafy liverworts can be divided into three groups. In conflict with the earlier hypotheses, the isophyllous liverworts, including Herbertaceae, were resolved as derived lineages within the liverworts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation is a synchronic description of adnominal person in the highly synthetic morphological system of Erzya as attested in extensive Erzya-language written-text corpora consisting of nearly 140 publications with over 4.5 million words and over 285,000 unique lexical items. Insight for this description have been obtained from several source grammars in German, Russian, Erzya, Finnish, Estonian and Hungarian, as well as bounteous discussions in the understanding of the language with native speakers and grammarians 1993 2010. Introductory information includes the discussion of the status of Erzya as a lan- guage, the enumeration of phonemes generally used in the transliteration of texts and an in-depth description of adnominal morphology. The reader is then made aware of typological and Erzya-specifc work in the study of adnominal-type person. Methods of description draw upon the prerequisite information required in the development of a two-level morphological analyzer, as can be obtained in the typological description of allomorphic variation in the target language. Indication of original author or dialect background is considered important in the attestation of linguistic phenomena, such that variation might be plotted for a synchronic description of the language. The phonological description includes the establishment of a 6-vowel, 29-consonant phoneme system for use in the transliteration of annotated texts, i.e. two phonemes more than are generally recognized, and numerous rules governing allophonic variation in the language. Erzya adnominal morphology is demonstrated to have a three-way split in stem types and a three-layer system of non-derivative affixation. The adnominal-affixation layers are broken into (a) declension (the categories of case, number and deictic marking); (b) nominal conjugation (non-verb grammatical and oblique-case items can be conjugated), and (c) clitic marking. Each layer is given statistical detail with regard to concatenability. Finally, individual subsections are dedicated to the matters of: possessive declension compatibility in the distinction of sublexica; genitive and dative-case paradigmatic defectivity in the possessive declension, where it is demonstrated to be parametrically diverse, and secondary declension, a proposed typology modifiers without nouns , as compatible with adnominal person.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain size and architecture exhibit great evolutionary and ontogenetic variation. Yet, studies on population variation (within a single species) in brain size and architecture, or in brain plasticity induced by ecologically relevant biotic factors have been largely overlooked. Here, I address the following questions: (i) do locally adapted populations differ in brain size and architecture, (ii) can the biotic environment induce brain plasticity, and (iii) do locally adapted populations differ in levels of brain plasticity? In the first two chapters I report large variation in both absolute and relative brain size, as well as in the relative sizes of brain parts, among divergent nine-spined stickleback (Pungitius pungitius) populations. Some traits show habitat-dependent divergence, implying natural selection being responsible for the observed patterns. Namely, marine sticklebacks have relatively larger bulbi olfactorii (chemosensory centre) and telencephala (involved in learning) than pond sticklebacks. Further, I demonstrate the importance of common garden studies in drawing firm evolutionary conclusions. In the following three chapters I show how the social environment and perceived predation risk shapes brain development. In common frog (Rana temporaria) tadpoles, I demonstrate that under the highest per capita predation risk, tadpoles develop smaller brains than in less risky situations, while high tadpole density results in enlarged tectum opticum (visual brain centre). Visual contact with conspecifics induces enlarged tecta optica in nine-spined sticklebacks, whereas when only olfactory cues from conspecifics are available, bulbus olfactorius become enlarged.Perceived predation risk results in smaller hypothalami (complex function) in sticklebacks. Further, group-living has a negative effect on relative brain size in the competition-adapted pond sticklebacks, but not in the predation-adapted marine sticklebacks. Perceived predation risk induces enlargement of bulbus olfactorius in pond sticklebacks, but not in marine sticklebacks who have larger bulbi olfactorii than pond fish regardless of predation. In sum, my studies demonstrate how applying a microevolutionary approach can help us to understand the enormous variation observed in the brains of wild animals a point-of-view which I high-light in the closing review chapter of my thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation is focused on the taxonomy, phylogeny, and ecology of the vagrant, erratic and allied terricolous and saxicolous species of the genera Aspicilia A. Massal. and Circinaria Link (Megasporaceae), particularly those traditionally referred to as manna lichens . The group has previously been defined on the basis of few morphological characters. The phylogeny of the family Megasporaceae is inferred from the combined dataset of nuLSU and mtSSU sequences. Five genera Aspicilia, Circinaria, Lobothallia, Megaspora, and Sagedia are recognized. Lobothallia is sister of the four other genera, while Aspicilia and Sagedia form the next clade. All these genera have small asci with eight spores. Circinaria is a sister genus of Megaspora, and these two have in common asci with (1 4) 6 8 large spores. Circinaria forms a monophyletic group and sphaerothallioid species form a monophyletic group within Circinaria. The presence of certain morphological characters such as pseudocyphellae, thickness of cortex and medulla layers, as well as ecological differences in sphaerothallioid species distinguish it from some other crustose species, especially those containing aspicilin and characterised by thin cortex and medulla layers, conidium length c. 6 12 µm and absence of pseudocyphellae. If sphaerothallioid species are accepted as a distinct genus, the rest of the Circinaria species would remain as a paraphyletic assemblage. Currently, the genus Circinaria includes all the sphaerothallioid species and its generic position is confirmed and accepted. Thus, it is proposed as a correct generic name also for the manna lichens described originally in other genera. Phylogeny at the species level was studied using nrITS sequence data. Traditionally, morphological characters have been used for the recognition of species. They were re-evaluated in the light of molecular data. Since characters such as vagrant, erratic and crustose growth forms proved to be misleading for the recognition of some species, a combination of several characters (including molecular data) is recommended. Vagrant growth form seems to have evolved several times among the distantly related lineages and even within a single population. The reasons behind the high plasticity in the external morphology of the sphaerothallioid Circinaria remain, however, unknown. Six new species are recognized: Aspicilia tibetica, Circinaria arida, C. digitata nom provis., C. gyrosa nom. provis., C. rogeri nom. provis., and C. rostamii nom. provis. Based on an analysis of nrITS dataset, three new erratic, vagrant and crustose species were also recognized, but these require additional study. The results also reveal that C. elmorei and C. hispida are not monophyletic as currently understood. In addition, 13 new combinations in the genus Circinaria are proposed.