18 resultados para drug surveillance program
em Helda - Digital Repository of University of Helsinki
Resumo:
Hereditary nonpolyposis colorectal cancer (HNPCC) is an inherited cancer predisposition syn-drome characterized by early onset colorectal cancer (CRC) and several other extra-colonic cancers, most commonly endometrial cancer (EC) and gastric cancer. Our aim was to evaluate the efficiency and results of the ongoing CRC and EC surveillance programs and to investigate the grounds for future gastric cancer screening by comparing the gastric biopsies of mutation positive and negative siblings in search for premalignant lesions. We also compared a new surveillance method, computerized tomographic colonoscopy (CTC) with optic colonoscopy. The patient material consisted of 579 family members from 111 Finnish HNPCC families al-most all harboring a known mismatch repair gene mutation. The efficacy of CRC and EC surveillance programs on HNPCC patients was evaluated by comparing the stage and survival of cancer cases detected with surveillance versus without. The performance of a new technique, CTC, was explored using a same-day colonoscopy as a reference standard. The use of intrauterine aspiration biopsies for EC surveillance was intro-duced for the first time in a HNPCC setting. Upper GI endoscopies were performed and biop-sies taken from mutation carriers and their mutation-negative siblings. The present surveillance program for CRC proved to be efficient. The CRC cases detected by surveillance were at a significantly more favorable stage than those in the non-surveilled group. This advantage was reflected in a significantly higher CRC-specific survival in the sur-veilled group. The performance of a new technique, CTC was found insufficient for polyp detection in this population in which every polyp, no matter the size, should be detected and removed. Colono-scopy was confirmed as a better surveillance modality than CTC. We could not observe any of the assumed differences in the gastric mucosa from mutation carriers and their mutation-negative siblings and no cases of gastric cancer were detected. The results gave no support for gastric surveillance. The EC surveillance program (transvaginal ultrasound and intra-uterine biopsy every 2-3 years) seemed to be efficient. It yielded several asymptomatic cancer cases and premalignant lesions. The stage distribution of the endometrial cancers in the group under surveillance tended to be more favorable than that of the mutation-positive, symptomatic EC patients who had no surveillance. None of the surveilled EC patients died of EC compared to six in the non-surveilled patients during the follow up. The improvement was, however, not statistically sig-nificant, thus far. Another observation was the good performance of endometrial aspiration biopsies used in this setting for the first time.
Resumo:
Background and aims. Since 1999, hospitals in the Finnish Hospital Infection Program (SIRO) have reported data on surgical site infections (SSI) following major hip and knee surgery. The purpose of this study was to obtain detailed information to support prevention efforts by analyzing SIRO data on SSIs, to evaluate possible factors affecting the surveillance results, and to assess the disease burden of postoperative prosthetic joint infections in Finland. Methods. Procedures under surveillance included total hip (THA) and total knee arthroplasties (TKA), and the open reduction and internal fixation (ORIF) of femur fractures. Hospitals prospectively collected data using common definitions and written protocol, and also performed postdischarge surveillance. In the validation study, a blinded retrospective chart review was performed and infection control nurses were interviewed. Patient charts of deep incisional and organ/space SSIs were reviewed, and data from three sources (SIRO, the Finnish Arthroplasty Register, and the Finnish Patient Insurance Centre) were linked for capture-recapture analyses. Results. During 1999-2002, the overall SSI rate was 3.3% after 11,812 orthopedic procedures (median length of stay, eight days). Of all SSIs, 56% were detected after discharge. The majority of deep incisional and organ/space SSIs (65/108, 60%) were detected on readmission. Positive and negative predictive values, sensitivity, and specificity for SIRO surveillance were 94% (95% CI, 89-99%), 99% (99-100%), 75% (56-93%), and 100% (97-100%), respectively. Of the 9,831 total joint replacements performed during 2001-2004, 7.2% (THA 5.2% and TKA 9.9%) of the implants were inserted in a simultaneous bilateral operation. Patients who underwent bilateral operations were younger, healthier, and more often males than those who underwent unilateral procedures. The rates of deep SSIs or mortality did not differ between bi- and uni-lateral THAs or TKAs. Four deep SSIs were reported following bilateral operations (antimicrobial prophylaxis administered 48-218 minutes before incision). In the three registers, altogether 129 prosthetic joint infections were identified after 13,482 THA and TKA during 1999-2004. After correction with the positive predictive value of SIRO (91%), a log-linear model provided an estimated overall prosthetic joint infection rate of 1.6% after THA and 1.3% after TKA. The sensitivity of the SIRO surveillance ranged from 36% to 57%. According to the estimation, nearly 200 prosthetic joint infections could occur in Finland each year (the average from 1999 to 2004) after THA and TKA. Conclusions. Postdischarge surveillance had a major impact on SSI rates after major hip and knee surgery. A minority of deep incisional and organ/space SSIs would be missed, however, if postdischarge surveillance by questionnaire was not performed. According to the validation study, most SSIs reported to SIRO were true infections. Some SSIs were missed, revealing some weakness in case finding. Variation in diagnostic practices may also affect SSI rates. No differences were found in deep SSI rates or mortality between bi- and unilateral THA and TKA. However, patient materials between these two groups differed. Bilateral operations require specific attention paid to their antimicrobial prophylaxis as well as to data management in the surveillance database. The true disease burden of prosthetic joint infections may be heavier than the rates from national nosocomial surveillance systems usually suggest.
Resumo:
The feasibility of different modern analytical techniques for the mass spectrometric detection of anabolic androgenic steroids (AAS) in human urine was examined in order to enhance the prevalent analytics and to find reasonable strategies for effective sports drug testing. A comparative study of the sensitivity and specificity between gas chromatography (GC) combined with low (LRMS) and high resolution mass spectrometry (HRMS) in screening of AAS was carried out with four metabolites of methandienone. Measurements were done in selected ion monitoring mode with HRMS using a mass resolution of 5000. With HRMS the detection limits were considerably lower than with LRMS, enabling detection of steroids at low 0.2-0.5 ng/ml levels. However, also with HRMS, the biological background hampered the detection of some steroids. The applicability of liquid-phase microextraction (LPME) was studied with metabolites of fluoxymesterone, 4-chlorodehydromethyltestosterone, stanozolol and danazol. Factors affecting the extraction process were studied and a novel LPME method with in-fiber silylation was developed and validated for GC/MS analysis of the danazol metabolite. The method allowed precise, selective and sensitive analysis of the metabolite and enabled simultaneous filtration, extraction, enrichment and derivatization of the analyte from urine without any other steps in sample preparation. Liquid chromatographic/tandem mass spectrometric (LC/MS/MS) methods utilizing electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) were developed and applied for detection of oxandrolone and metabolites of stanozolol and 4-chlorodehydromethyltestosterone in urine. All methods exhibited high sensitivity and specificity. ESI showed, however, the best applicability, and a LC/ESI-MS/MS method for routine screening of nine 17-alkyl-substituted AAS was thus developed enabling fast and precise measurement of all analytes with detection limits below 2 ng/ml. The potential of chemometrics to resolve complex GC/MS data was demonstrated with samples prepared for AAS screening. Acquired full scan spectral data (m/z 40-700) were processed by the OSCAR algorithm (Optimization by Stepwise Constraints of Alternating Regression). The deconvolution process was able to dig out from a GC/MS run more than the double number of components as compared with the number of visible chromatographic peaks. Severely overlapping components, as well as components hidden in the chromatographic background could be isolated successfully. All studied techniques proved to be useful analytical tools to improve detection of AAS in urine. Superiority of different procedures is, however, compound-dependent and different techniques complement each other.
Resumo:
Increasing attention has been focused on methods that deliver pharmacologically active compounds (e.g. drugs, peptides and proteins) in a controlled fashion, so that constant, sustained, site-specific or pulsatile action can be attained. Ion-exchange resins have been widely studied in medical and pharmaceutical applications, including controlled drug delivery, leading to commercialisation of some resin based formulations. Ion-exchangers provide an efficient means to adjust and control drug delivery, as the electrostatic interactions enable precise control of the ion-exchange process and, thus, a more uniform and accurate control of drug release compared to systems that are based only on physical interactions. Unlike the resins, only few studies have been reported on ion-exchange fibers in drug delivery. However, the ion-exchange fibers have many advantageous properties compared to the conventional ion-exchange resins, such as more efficient compound loading into and release from the ion-exchanger, easier incorporation of drug-sized compounds, enhanced control of the ion-exchange process, better mechanical, chemical and thermal stability, and good formulation properties, which make the fibers attractive materials for controlled drug delivery systems. In this study, the factors affecting the nature and strength of the binding/loading of drug-sized model compounds into the ion-exchange fibers was evaluated comprehensively and, moreover, the controllability of subsequent drug release/delivery from the fibers was assessed by modifying the conditions of external solutions. Also the feasibility of ion-exchange fibers for simultaneous delivery of two drugs in combination was studied by dual loading. Donnan theory and theoretical modelling were applied to gain mechanistic understanding on these factors. The experimental results imply that incorporation of model compounds into the ion-exchange fibers was attained mainly as a result of ionic bonding, with additional contribution of non-specific interactions. Increasing the ion-exchange capacity of the fiber or decreasing the valence of loaded compounds increased the molar loading, while more efficient release of the compounds was observed consistently at conditions where the valence or concentration of the extracting counter-ion was increased. Donnan theory was capable of fully interpreting the ion-exchange equilibria and the theoretical modelling supported precisely the experimental observations. The physico-chemical characteristics (lipophilicity, hydrogen bonding ability) of the model compounds and the framework of the fibrous ion-exchanger influenced the affinity of the drugs towards the fibers and may, thus, affect both drug loading and release. It was concluded that precisely controlled drug delivery may be tailored for each compound, in particularly, by choosing a suitable ion-exchange fiber and optimizing the delivery system to take into account the external conditions, also when delivering two drugs simultaneously.
Resumo:
Modern drug discovery gives rise to a great number of potential new therapeutic agents, but in some cases the efficient treatment of patient may not be achieved because the delivery of active compounds to the target site is insufficient. Thus, drug delivery is one of the major challenges in current pharmaceutical research. Numerous nanoparticle-based drug carriers, e.g. liposomes, have been developed for enhanced drug delivery and targeting. Drug targeting may enhance the efficiency of the treatment and, importantly, reduce unwanted side effects by decreasing drug distribution to non-target tissues. Liposomes are biocompatible lipid-based carriers that have been studied for drug delivery during the last 40 years. They can be functionalized with targeting ligands and sensing materials for triggered activation. In this study, various external signal-assisted liposomal delivery systems were developed. Signals can be used to modulate drug permeation or release from the liposome formulation, and they provide accurate control of time, place and rate of activation. The study involved three types of signals that were used to trigger drug permeation and release: electricity, heat and light. Electrical stimulus was utilized to enhance the permeation of liposomal DNA across the skin. Liposome/DNA complex-mediated transfections were performed in tight rat epidermal cell model. Various transfection media and current intensities were tested, and transfection efficiency was evaluated non-invasively by monitoring the concentration of secreted reporter protein in cell culture medium. Liposome/DNA complexes produced gene expression, but electrical stimulus did not enhance the transfection efficiency significantly. Heat-sensitive liposomal drug delivery system was developed by coating liposomes with biodegradable and thermosensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate polymer. Temperature-triggered liposome aggregation and contents release from liposomes were evaluated. The cloud point temperature (CP) of the polymer was set to 42 °C. Polymer-coated liposome aggregation and contents release were observed above CP of the polymer, while non-coated liposomes remained intact. Polymer precipitates above its CP and interacts with liposomal bilayers. It is likely that this induces permeabilization of the liposomal membrane and contents release. Light-sensitivity was introduced to liposomes by incorporation of small (< 5 nm) gold nanoparticles. Hydrophobic and hydrophilic gold nanoparticles were embedded in thermosensitive liposomes, and contents release was investigated upon UV light exposure. UV light-induced lipid phase transitions were examined with small angle X-ray scattering, and light-triggered contents release was shown also in human retinal pigment epithelial cell line. Gold nanoparticles absorb light energy and transfer it into heat, which induces phase transitions in liposomes and triggers the contents release. In conclusion, external signal-activated liposomes offer an advanced platform for numerous applications in drug delivery, particularly in the localized drug delivery. Drug release may be localized to the target site with triggering stimulus that results in better therapeutic response and less adverse effects. Triggering signal and mechanism of activation can be selected according to a specific application.
Resumo:
Poor pharmacokinetics is one of the reasons for the withdrawal of drug candidates from clinical trials. There is an urgent need for investigating in vitro ADME (absorption, distribution, metabolism and excretion) properties and recognising unsuitable drug candidates as early as possible in the drug development process. Current throughput of in vitro ADME profiling is insufficient because effective new synthesis techniques, such as drug design in silico and combinatorial synthesis, have vastly increased the number of drug candidates. Assay technologies for larger sets of compounds than are currently feasible are critically needed. The first part of this work focused on the evaluation of cocktail strategy in studies of drug permeability and metabolic stability. N-in-one liquid chromatography-tandem mass spectrometry (LC/MS/MS) methods were developed and validated for the multiple component analysis of samples in cocktail experiments. Together, cocktail dosing and LC/MS/MS were found to form an effective tool for increasing throughput. First, cocktail dosing, i.e. the use of a mixture of many test compounds, was applied in permeability experiments with Caco-2 cell culture, which is a widely used in vitro model for small intestinal absorption. A cocktail of 7-10 reference compounds was successfully evaluated for standardization and routine testing of the performance of Caco-2 cell cultures. Secondly, cocktail strategy was used in metabolic stability studies of drugs with UGT isoenzymes, which are one of the most important phase II drug metabolizing enzymes. The study confirmed that the determination of intrinsic clearance (Clint) as a cocktail of seven substrates is possible. The LC/MS/MS methods that were developed were fast and reliable for the quantitative analysis of a heterogenous set of drugs from Caco-2 permeability experiments and the set of glucuronides from in vitro stability experiments. The performance of a new ionization technique, atmospheric pressure photoionization (APPI), was evaluated through comparison with electrospray ionization (ESI), where both techniques were used for the analysis of Caco-2 samples. Like ESI, also APPI proved to be a reliable technique for the analysis of Caco-2 samples and even more flexible than ESI because of the wider dynamic linear range. The second part of the experimental study focused on metabolite profiling. Different mass spectrometric instruments and commercially available software tools were investigated for profiling metabolites in urine and hepatocyte samples. All the instruments tested (triple quadrupole, quadrupole time-of-flight, ion trap) exhibited some good and some bad features in searching for and identifying of expected and non-expected metabolites. Although, current profiling software is helpful, it is still insufficient. Thus a time-consuming largely manual approach is still required for metabolite profiling from complex biological matrices.
Resumo:
Kaposi's sarcoma herpesvirus (KSHV) is an oncogenic human virus and the causative agent of three human malignancies: Kaposi's sarcoma (KS), Multicentric Castleman's Disease (MCD), and primary effusion lymphoma (PEL). In tumors, KSHV establishes latent infection during which it produces no infectious particles. Latently infected cells can enter the lytic replication cycle, and upon provision of appropriate cellular signals, produce progeny virus. PEL, commonly described in patients with AIDS, represents a diffuse large-cell non-Hodgkin's lymphoma, with median survival time less than six months after diagnosis. As tumor suppressor gene TP53 mutations occur rarely in PEL, the aim of this thesis was to investigate whether non-genotoxic activation of the p53 pathway can eradicate malignant PEL cells. This thesis demonstrates that Nutlin-3, a small-molecule inhibitor of the p53-MDM2 interaction, efficiently restored p53 function in PEL cells, leading to cell cycle arrest and massive apoptosis. Furthermore, we found that KSHV infection activated DNA damage signaling, rendering the cells more sensitive to p53-dependent cell death. We also showed in vivo the therapeutic potential of p53 restoration that led to regression of subcutaneous and intraperitoneal PEL tumor xenografts without adversely affecting normal cells. Importantly, we demonstrated that in a small subset of intraperitoneal PEL tumors, spontaneous induction of viral reactivation dramatically impaired Nutlin-3-induced p53-mediated apoptosis. Accordingly, we found that elevated KSHV lytic transcripts correlated with PEL tumor burden in animals and that inhibition of viral reactivation in vitro restored cytotoxic activity of a small-molecule inhibitor of the p53-MDM2 interaction. Latency provides a unique opportunity for KSHV to escape host immune surveillance and to establish persistent infections. However, to maintain viral reservoirs and spread to other hosts, KSHV must be reactivated from latency and enter into the lytic growth phase. We showed that phosphorylation of nucleolar phosphoprotein nucleophosmin (NPM) by viral cyclin-CDK6 is critical for establishment and maintenance of the KSHV latency. In short, this study provides evidence that the switch between latent phase and lytic replication is a critical step that determines the outcome of viral infection and the pathogenesis of KSHV-induced malignancies. Our data may thus contribute to development of novel targeted therapies for intervention and treatment of KSHV-associated cancers.
Resumo:
Prostate cancer is the most common noncutaneous malignancy and the second leading cause of cancer mortality in men. In 2004, 5237 new cases were diagnosed and altogether 25 664 men suffered from prostate cancer in Finland (Suomen Syöpärekisteri). Although extensively investigated, we still have a very rudimentary understanding of the molecular mechanisms leading to the frequent transformation of the prostate epithelium. Prostate cancer is characterized by several unique features including the multifocal origin of tumors and extreme resistance to chemotherapy, and new treatment options are therefore urgently needed. The integrity of genomic DNA is constantly challenged by genotoxic insults. Cellular responses to DNA damage involve elegant checkpoint cascades enforcing cell cycle arrest, thus facilitating damage repair, apoptosis or cellular senescence. Cellular DNA damage triggers the activation of tumor suppressor protein p53 and Wee1 kinase which act as executors of the cellular checkpoint responses. These are essential for genomic integrity, and are activated in early stages of tumorigenesis in order to function as barriers against tumor formation. Our work establishes that the primary human prostatic epithelial cells and prostatic epithelium have unexpectedly indulgent checkpoint surveillance. This is evidenced by the absence of inhibitory Tyr15 phosphorylation on Cdk2, lack of p53 response, radioresistant DNA synthesis, lack of G1/S and G2/M phase arrest, and presence of persistent gammaH2AX damage foci. We ascribe the absence of inhibitory Tyr15 phosphorylation to low levels of Wee1A, a tyrosine kinase and negative regulator of cell cycle progression. Ectopic Wee1A kinase restored Cdk2-Tyr15 phosphorylation and efficiently rescued the ionizing radiation-induced checkpoints in the human prostatic epithelial cells. As variability in the DNA damage responses has been shown to underlie susceptibility to cancer, our results imply that a suboptimal checkpoint arrest may greatly increase the accumulation of genetic lesions in the prostate epithelia. We also show that small molecules can restore p53 function in prostatic epithelial cells and may serve as a paradigm for the development of future therapeutic agents for the treatment of prostate cancer We hypothesize that the prostate has evolved to activate the damage surveillance pathways and molecules involved in these pathways only to certain stresses in extreme circumstances. In doing so, this organ inadvertently made itself vulnerable to genotoxic stress, which may have implications in malignant transformation. Recognition of the limited activity of p53 and Wee1 in the prostate could drive mechanism-based discovery of preventative and therapeutic agents.
Resumo:
Drug Analysis without Primary Reference Standards: Application of LC-TOFMS and LC-CLND to Biofluids and Seized Material Primary reference standards for new drugs, metabolites, designer drugs or rare substances may not be obtainable within a reasonable period of time or their availability may also be hindered by extensive administrative requirements. Standards are usually costly and may have a limited shelf life. Finally, many compounds are not available commercially and sometimes not at all. A new approach within forensic and clinical drug analysis involves substance identification based on accurate mass measurement by liquid chromatography coupled with time-of-flight mass spectrometry (LC-TOFMS) and quantification by LC coupled with chemiluminescence nitrogen detection (LC-CLND) possessing equimolar response to nitrogen. Formula-based identification relies on the fact that the accurate mass of an ion from a chemical compound corresponds to the elemental composition of that compound. Single-calibrant nitrogen based quantification is feasible with a nitrogen-specific detector since approximately 90% of drugs contain nitrogen. A method was developed for toxicological drug screening in 1 ml urine samples by LC-TOFMS. A large target database of exact monoisotopic masses was constructed, representing the elemental formulae of reference drugs and their metabolites. Identification was based on matching the sample component s measured parameters with those in the database, including accurate mass and retention time, if available. In addition, an algorithm for isotopic pattern match (SigmaFit) was applied. Differences in ion abundance in urine extracts did not affect the mass accuracy or the SigmaFit values. For routine screening practice, a mass tolerance of 10 ppm and a SigmaFit tolerance of 0.03 were established. Seized street drug samples were analysed instantly by LC-TOFMS and LC-CLND, using a dilute and shoot approach. In the quantitative analysis of amphetamine, heroin and cocaine findings, the mean relative difference between the results of LC-CLND and the reference methods was only 11%. In blood specimens, liquid-liquid extraction recoveries for basic lipophilic drugs were first established and the validity of the generic extraction recovery-corrected single-calibrant LC-CLND was then verified with proficiency test samples. The mean accuracy was 24% and 17% for plasma and whole blood samples, respectively, all results falling within the confidence range of the reference concentrations. Further, metabolic ratios for the opioid drug tramadol were determined in a pharmacogenetic study setting. Extraction recovery estimation, based on model compounds with similar physicochemical characteristics, produced clinically feasible results without reference standards.
Resumo:
Background: The incidence of sexually transmitted infections (STIs) in most EU states has gradually increased and the rate of newly diagnosed HIV cases has doubled since 1999. STIs differ in their clinical features, prognosis and transmission dynamics, though they do share a common factor in their mode of transmission −that is, human behaviour. The evolvement of STI epidemiology involves a joint action of biological, epidemiological and societal factors. Of the more immediate factors, besides timely diagnosis and appropriate treatment, STI incidence is influenced by population patterns of sexual risk behaviour, particularly the number of sexual partners and the frequency of unprotected intercourse. Assessment of sexual behaviour, its sociodemographic determinants and time-trends are important in understanding the distribution and dynamic of STI epidemiology. Additionally, in the light of the basic structural determinants, such as increased level of migration, changes in gender dynamics and impacts from globalization, with its increasing alignment of values and beliefs, can reveal future challenges related to STI epidemiology. STI case surveillance together with surveillance on sexual behaviour can guide the identification of preventive strategies, assess their effectiveness and predict emerging trends. The objective of this study was to provide base line data on sexual risk behaviour, self-reported STIs and their patterns by sociodemographic factors as well as associations of sexual risk behaviour with substance use among young men in Finland and Estonia. In Finland national population based data on adult men s sexual behaviour is limited. The findings are discussed in the context of STI epidemiology as well as their possible implications for public health policies and prevention strategies. Materials and Methods: Data from three different cross-sectional population-based surveys conducted in Finland and Estonia, during 1998 2005, were used. Sexual behaviour- and health-related questions were incorporated in two surveys in Finland; the Health 2000, a large scale general health survey, focussed on young adults, and the Military health behavioural survey on military conscripts participating in the mandatory military training. Through research collaboration with Estonia, similar questions to the Finnish surveys were introduced to the second Estonian HIV/AIDS survey, which was targeted at young adults. All surveys applied mail-returned, anonymous, self-administered questionnaires with multiple choice formatted answers. Results: In Finland, differences in sexual behaviour between young men and women were minor. An age-stratified analysis revealed that the sex-related difference observed in the youngest age group (18 19 years) levelled off in the age group 20 24 and almost disappeared among those aged 25 29. Marital status was the most important sociodemographic correlate for sexual behaviour for both sexes, singles reporting higher numbers of lifetime-partners and condom use. This effect was stronger for women than for men. However, of those who had sex with casual partners, 15% were married or co-habiting, with no difference between male and female respondents. According to the Military health behavioural survey, young men s sexual risk behaviour in Finland did not markedly change over a period of time between 1998 and 2005. Approximately 30−40% of young men had had multiple sex partners (more than five) in their lifetime, over 20% reported having had multiple sex partners (at least three) over the past year and 50% did not use a condom in their last sexual intercourse. Some 10% of men reported accumulation of risk factors, i.e. having had both, multiple sex partners and not used a condom in their last intercourse, over the past year of the survey. When differences and similarities were viewed within Finland and Estonia, a clear sociodemographic patterning of sexual risk behaviour and self-reported STIs was found in Finland, but a somewhat less consistent trend in Estonia. Generally, both, alcohol and drug use were strong correlates for sexual risk behaviour and self-reported STIs in Finland and Estonia, having a greater effect on engagement with multiple sex partners rather than unprotected intercourse or self-reported STIs. In Finland alcohol use, relative to drug use, was a stronger predictor of sexual risk behaviour and self-reported STIs, while in Estonia drug use predicted sexual risk behaviour and self-reported STIs stronger than alcohol use. Conclusions: The study results point to the importance for prevention of sexual risk behaviour, particularly strategies that integrate sexual risk with alcohol and drug use risks. The results point to the need to focus further research on sexual behaviour and STIs among young people; on tracking trends among general population as well as applying in-depth research to identify and learn from vulnerable and high-risk population groups for STIs who are exposed to a combination of risk factors.