18 resultados para Thyroid Gland -- drug effects
em Helda - Digital Repository of University of Helsinki
Resumo:
The growth factors of the glial cell line-derived neurotrophic factor (GDNF) family consisting of GDNF, neurturin (NRTN), artemin (ARTN) and persephin (PSPN), are involved in the development, differentiation and maintenance of many types of neurons. They also have important functions outside the nervous system in the development of kidney, testis and thyroid gland. Each of these GFLs preferentially binds to one of the glycosylphosphatidylinositol (GPI)-anchored GDNF family receptors α (GFRα). GDNF binds to GFRα1, NRTN to GFRα2, ARTN to GFRα3 and PSPN to GFRα4. The GFLs in the complex with their cognate GFRα receptors all bind to and signal through the receptor tyrosine kinase RET. Alternative splicing of the mouse GFRα4 gene yields three splice isoforms. These had been described as putative GPI-anchored, transmembrane and soluble forms. My goal was to characterise the function of the different forms of mouse GFRα4. I firstly found that the putative GPI-anchored GFRα4 (GFRα4-GPI) is glycosylated, membrane-bound, GPI-anchored and interacts with PSPN and RET. We also showed that mouse GFRα4-GPI mediates PSPN-induced phosphorylation of RET, promotes PSPN-dependent neuronal differentiation of the rat pheochromocytoma cell line PC6-3 and PSPN-dependent survival of cerebellar granule neurons (CGN). However, although this receptor can mediate PSPN-signalling and activate RET, GFRα4-GPI does not recruit RET into lipid rafts. The recruitment of RET into lipid rafts has previously been thought to be a crucial event for GDNF- and GFL-mediated signalling via RET. I secondly demonstrated that the putative transmembrane GFRα4 (GFRα4-TM) is indeed a real transmembrane GFRα4 protein. Although it has a weak binding capacity for PSPN, it can not mediate PSPN-dependent phosphorylation of RET, neuronal differentiation or survival. These data show that GFRα4-TM is inactive as a receptor for PSPN. Surprisingly, GFRα4-TM can negatively regulate PSPN-mediated signalling via GFRα4-GPI. GFRα4-TM interacts with GFRα4-GPI and blocks PSPN-induced phosphorylation of RET, neuronal differentiation as well as survival. Taken together, our data show that GFRα4-TM may act as a dominant negative inhibitor of PSPN-mediated signaling. The most exciting part of my work was the finding that the putative soluble GFRα4 (GFRα4-sol) can form homodimers and function as an agonist of the RET receptor. In the absence of PSPN, GFRα4-sol can promote the phosphorylation of RET, trigger the activation of the PI-3K/AKT pathway, induce neuronal differentiation and support the survival of CGN. Our findings are in line with a recent publication showing the GFRα4-sol might contribute to the inherited cancer syndrome multiple endocrine neoplasia type 2. Our data provide an explanation to how GFRα4-sol may cause or modify the disease. Mammalian GFRα4 receptors all lack the first Cys-rich domain which is present in other GFRα receptors. In the final part of my work I have studied the function of this particular domain. I created a truncated GFRα1 construct lacking the first Cys-rich domain. Using binding assays in both cellular and cell-free systems, phosphorylation assays with RET, as well as neurite outgrowth assays, we found that the first Cys-rich domain contributes to an optimal function of GFRα1, by stabilizing the interaction between GDNF and GFRα1.
Resumo:
Rheumatoid arthritis (RA) and other chronic inflammatory joint diseases already begin to affect patients health-related quality of life (HRQoL) in the earliest phases of these diseases. In treatment of inflammatory joint diseases, the last two decades have seen new strategies and treatment options introduced. Treatment is started at an earlier phase; combinations of disease-modifying anti-rheumatic drugs (DMARDs) and corticosteroids are used; and in refractory cases new drugs such as tumour necrosis factor (TNF) inhibitors or other biologicals can be started. In patients with new referrals to the Department of Rheumatology of the Helsinki University Central Hospital, we evaluated the 15D and the Stanford Health Assessment Questionnaire (HAQ) results at baseline and approximately 8 months after their first visit. Altogether the analysis included 295 patients with various rheumatic diseases. The mean baseline 15D score (0.822, SD 0.114) was significantly lower than for the age-matched general population (0.903, SD 0.098). Patients with osteoarthritis (OA) and spondyloarthropathies (SPA) reported the poorest HRQoL. In patients with RA and reactive arthritis (ReA) the HRQoL improved in a statistically significant manner during the 8-month follow-up. In addition, a clinically important change appeared in patients with systemic rheumatic diseases. HAQ score improved significantly in patients with RA, arthralgia and fibromyalgia, and ReA. In a study of 97 RA patients treated either with etanercept or adalimumab, we assessed their HRQoL with the RAND 36-Item Health Survey 1.0 (RAND-36) questionnaire. We also analysed changes in clinical parameters and the HAQ. With etanercept and adalimumab, the values of all domains in the RAND-36 questionnaire increased during the first 3 months. The efficacy of each in improving HRQoL was statistically significant, and the drug effects were comparable. Compared to Finnish age- and sex-matched general population values, the HRQoL of the RA patients was significantly lower at baseline and, despite the improvement, remained lower also at follow-up. Our RA patients had long-standing and severe disease that can explain the low HRQoL also at follow-up. In a pharmacoeconomic study of patients treated with infliximab we evaluated medical and work disability costs for patients with chronic inflammatory joint disease during one year before and one year after institution of infliximab treatment. Clinical and economic data for 96 patients with different arthritis diagnoses showed, in all patients, significantly improved clinical and laboratory variables. However, the medical costs increased significantly during the second period by 12 015 (95% confidence interval, 6 496 to 18 076). Only a minimal decrease in work disability costs occurred mean decrease 130 (-1 268 to 1 072). In a study involving a switch from infliximab to etanercept, we investigated the clinical outcome in 49 patients with RA. Reasons for switching were in 42% failure to respond by American College of Rheumatology (ACR) 50% criteria; in 12% adverse event; and in 46% non-medical reasons although the patients had responded to infliximab. The Disease Activity Score with 28 joints examined (DAS28) allowed us to measure patients disease activity and compare outcome between groups based on the reason for switching. In the patients in whom infliximab was switched to etanercept for nonmedical reasons, etanercept continued to suppress disease activity effectively, and 1-year drug survival for etanercept was 77% (95% CI, 62 to 97). In patients in the infliximab failure and adverse event groups, DAS28 values improved significantly during etanercept therapy. However, the 1-year drug survival of etanercept was only 43% (95% CI, 26 to 70) and 50% (95% CI, 33 to 100), respectively. Although the HRQoL of patients with inflammatory joint diseases is significantly lower than that of the general population, use of early and aggressive treatment strategies including TNF-inhibitors can improve patients HRQoL effectively. Further research is needed in finding new treatment strategies for those patients who fail to respond or lose their response to TNF-inhibitors.
Resumo:
The blood-brain barrier (BBB) is a unique barrier that strictly regulates the entry of endogenous substrates and xenobiotics into the brain. This is due to its tight junctions and the array of transporters and metabolic enzymes that are expressed. The determination of brain concentrations in vivo is difficult, laborious and expensive which means that there is interest in developing predictive tools of brain distribution. Predicting brain concentrations is important even in early drug development to ensure efficacy of central nervous system (CNS) targeted drugs and safety of non-CNS drugs. The literature review covers the most common current in vitro, in vivo and in silico methods of studying transport into the brain, concentrating on transporter effects. The consequences of efflux mediated by p-glycoprotein, the most widely characterized transporter expressed at the BBB, is also discussed. The aim of the experimental study was to build a pharmacokinetic (PK) model to describe p-glycoprotein substrate drug concentrations in the brain using commonly measured in vivo parameters of brain distribution. The possibility of replacing in vivo parameter values with their in vitro counterparts was also studied. All data for the study was taken from the literature. A simple 2-compartment PK model was built using the Stella™ software. Brain concentrations of morphine, loperamide and quinidine were simulated and compared with published studies. Correlation of in vitro measured efflux ratio (ER) from different studies was evaluated in addition to studying correlation between in vitro and in vivo measured ER. A Stella™ model was also constructed to simulate an in vitro transcellular monolayer experiment, to study the sensitivity of measured ER to changes in passive permeability and Michaelis-Menten kinetic parameter values. Interspecies differences in rats and mice were investigated with regards to brain permeability and drug binding in brain tissue. Although the PK brain model was able to capture the concentration-time profiles for all 3 compounds in both brain and plasma and performed fairly well for morphine, for quinidine it underestimated and for loperamide it overestimated brain concentrations. Because the ratio of concentrations in brain and blood is dependent on the ER, it is suggested that the variable values cited for this parameter and its inaccuracy could be one explanation for the failure of predictions. Validation of the model with more compounds is needed to draw further conclusions. In vitro ER showed variable correlation between studies, indicating variability due to experimental factors such as test concentration, but overall differences were small. Good correlation between in vitro and in vivo ER at low concentrations supports the possibility of using of in vitro ER in the PK model. The in vitro simulation illustrated that in the simulation setting, efflux is significant only with low passive permeability, which highlights the fact that the cell model used to measure ER must have low enough paracellular permeability to correctly mimic the in vivo situation.
Resumo:
Modern drug discovery gives rise to a great number of potential new therapeutic agents, but in some cases the efficient treatment of patient may not be achieved because the delivery of active compounds to the target site is insufficient. Thus, drug delivery is one of the major challenges in current pharmaceutical research. Numerous nanoparticle-based drug carriers, e.g. liposomes, have been developed for enhanced drug delivery and targeting. Drug targeting may enhance the efficiency of the treatment and, importantly, reduce unwanted side effects by decreasing drug distribution to non-target tissues. Liposomes are biocompatible lipid-based carriers that have been studied for drug delivery during the last 40 years. They can be functionalized with targeting ligands and sensing materials for triggered activation. In this study, various external signal-assisted liposomal delivery systems were developed. Signals can be used to modulate drug permeation or release from the liposome formulation, and they provide accurate control of time, place and rate of activation. The study involved three types of signals that were used to trigger drug permeation and release: electricity, heat and light. Electrical stimulus was utilized to enhance the permeation of liposomal DNA across the skin. Liposome/DNA complex-mediated transfections were performed in tight rat epidermal cell model. Various transfection media and current intensities were tested, and transfection efficiency was evaluated non-invasively by monitoring the concentration of secreted reporter protein in cell culture medium. Liposome/DNA complexes produced gene expression, but electrical stimulus did not enhance the transfection efficiency significantly. Heat-sensitive liposomal drug delivery system was developed by coating liposomes with biodegradable and thermosensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate polymer. Temperature-triggered liposome aggregation and contents release from liposomes were evaluated. The cloud point temperature (CP) of the polymer was set to 42 °C. Polymer-coated liposome aggregation and contents release were observed above CP of the polymer, while non-coated liposomes remained intact. Polymer precipitates above its CP and interacts with liposomal bilayers. It is likely that this induces permeabilization of the liposomal membrane and contents release. Light-sensitivity was introduced to liposomes by incorporation of small (< 5 nm) gold nanoparticles. Hydrophobic and hydrophilic gold nanoparticles were embedded in thermosensitive liposomes, and contents release was investigated upon UV light exposure. UV light-induced lipid phase transitions were examined with small angle X-ray scattering, and light-triggered contents release was shown also in human retinal pigment epithelial cell line. Gold nanoparticles absorb light energy and transfer it into heat, which induces phase transitions in liposomes and triggers the contents release. In conclusion, external signal-activated liposomes offer an advanced platform for numerous applications in drug delivery, particularly in the localized drug delivery. Drug release may be localized to the target site with triggering stimulus that results in better therapeutic response and less adverse effects. Triggering signal and mechanism of activation can be selected according to a specific application.
Resumo:
Much of the global cancer research is focused on the most prevalent tumors; yet, less common tumor types warrant investigation, since A rare disorder is not necessarily an unimportant one . The present work discusses a rare tumor type, the benign adenomas of the pituitary gland, and presents the advances which, during the course of this thesis work, contributed to the elucidation of a fraction of their genetic background. Pituitary adenomas are benign neoplasms of the anterior pituitary lobe, accounting for approximately 15% of all intracranial tumors. Pituitary adenoma cells hypersecrete the hormones normally produced by the anterior pituitary tissue, such as growth hormone (GH) and prolactin (PRL). Despite their non-metastasizing nature, these adenomas can cause significant morbidity and have to be adequately treated; otherwise, they can compromise the patient s quality of life, due to conditions provoked by hormonal hypersecretion, such as acromegaly in the case of GH-secreting adenomas, or due to compressive effects to surrounding tissues. The vast majority of pituitary adenomas arise sporadically, whereas a small subset occur as component of familial endocrine-related tumor syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 is caused by germline mutations in the MEN1 tumor suppressor gene (11q13), whereas the majority of CNC cases carry germline mutations in the PRKAR1A gene (17q24). Pituitary adenomas are also encountered in familial settings outside the context of MEN1 and CNC, but unlike in the latter syndromes, their genetic background until recently remained elusive. Evidence in previous literature supported the notion that a tumor suppressor gene on 11q13, residing very close to but still distinct from MEN1, causes genetic susceptibility to pituitary tumors. The aim of the study was to identify the genetic cause of a low penetrance form of Pituitary Adenoma Predisposition (PAP) in families from Northern Finland. The present work describes the methodological approach that led to the identification of aryl hydrocarbon receptor interacting protein (AIP) as the gene causing PAP. Combining chip-based technologies (SNP and gene expression arrays) with traditional gene mapping methods and genealogy data, we showed that germline AIP mutations cause PAP in familial and sporadic settings. PAP patients were diagnosed with mostly adenomas of the GH/PRL-secreting cell lineage. In Finland, two AIP mutations accounted for 16% of all patients diagnosed with GH-secreting adenomas, and for 40% of patients being younger than 35 years of age at diagnosis. AIP is suggested to act as a tumor suppressor gene, a notion supported by the nature of the identified mutations (most are truncating) and the biallelic inactivation of AIP in the tumors studied. AIP has been best characterized as a cytoplasmic interaction partner of aryl hydrocarbon receptor (AHR), also known as dioxin receptor, but it has other partners as well. The mechanisms that underlie AIP-mediated pituitary tumorigenesis are to date largely unknown and warrant further investigation. Because AIP was identified in the genetically homogeneous Finnish population, it was relevant to examine its contribution to PAP in other, more heterogeneous, populations. Analysis of pituitary adenoma patient series of various ethnic origins and differing clinical settings revealed germline AIP mutations in all cohorts studied, albeit with low frequencies (range 0.8-7.4%). Overall, PAP patients were typically diagnosed at a young age (range 8-41 years), mainly with GH-secreting adenomas, without strong family history of endocrine disease. Because many PAP patients did not display family history of pituitary adenomas, detection of the condition appeared challenging. AIP immunohistochemistry was tested as a molecular pre-screening tool on mutation-positive versus mutation-negative tumors, and proved to be a potentially useful predictor of PAP. Mutation screening of a large cohort of colorectal, breast, and prostate tumors did not reveal somatic AIP mutations. These tumors, apart from being the most prevalent among men and women worldwide, have been associated with acromegaly, particularly colorectal neoplasia. In this material, AIP did not appear to contribute to the pathogenesis of these common tumor types and other genes seem likely to play a role in such tumorigenesis. Finally, the contribution of AIP in pediatric onset pituitary adenomas was examined in a unique population-based cohort of sporadic pituitary adenoma patients from Italy. Germline AIP mutations may account for a subset of pediatric onset GH-secreting adenomas (in this study one of seven GH-secreting adenoma cases or 14.3%), and appear to be enriched among young (≤25 years old) patients. In summary, this work reveals a novel tumor susceptibility gene, namely AIP, which causes genetic predisposition to pituitary adenomas, in particular GH-secreting adenomas. Moreover, it provides molecular tools for identification of individuals predisposed for PAP. Further elaborate studies addressing the functional role of AIP in normal and tumor cells will hopefully expand our knowledge on endocrine neoplasia and reveal novel cellular mechanisms of pituitary tumorigenesis, including potential drug targets.
Resumo:
Thyroid hormone (TH) plays an important role in maintaining a homeostasis in all the cells of our body. It also has significant cardiovascular effects, and abnormalities of its concentration can cause cardiovascular disease and even morbidity. Especially development of heart failure has been connected to low levels of thyroid hormone. A decrease in TH levels or TH-receptor binding adversely effects cardiac function. Although, this occurs in part through alterations in excitation-contraction and transport proteins, recent data from our laboratory indicate that TH also mediates changes in myocardial energy metabolism. Thyroid dysfunction may limit the heart s ability to shift substrate pathways and provide adequate energy supply during stress responses. Our goals of these studies were to determine substrate oxidation pattern in systemic and cardiac specific hypothyroidism at rest and at higher rates of oxygen demand. Additionally we investigated the TH mediated mechanisms in myocardial substrate selection and established the metabolic phenotype caused by a thyroid receptor dysfunction. We measured cardiac metabolism in an isolated heart model using 13Carbon isotopomer analyses with MR spectroscopy to determine function, oxygen consumption, fluxes and fractional contribution of acetyl-CoA to the citric acid cycle (CAC). Molecular pathways for changes in cardiac function and substrate shifts occurring during stress through thyroid receptor abnormalities were determined by protein analyses. Our results show that TH modifies substrate selection through nuclear-mediated and rapid posttranscriptional mechanisms. It modifies substrate selection differentially at rest and at higher rates of oxygen demand. Chronic TH deficiency depresses total CAC flux and selectively fatty acid flux, whereas acute TH supplementation decreases lactate oxidation. Insertion of a dominant negative thyroid receptor (Δ337T) alters metabolic phenotype and contractive efficiency in heart. The capability of the Δ337T heart to increase carbohydrate oxidation in response to stress seems to be limited. These studies provided a clearer understanding of the TH role in heart disease and shed light to identification of the molecular mechanisms that will facilitate in finding targets for heart failure prevention and treatment.
Resumo:
The characteristics of drug addiction include compulsive drug use despite negative consequences and re-occurring relapses, returns to drug use after a period of abstinence. Therefore, relapse prevention is one of the major challenges for the treatment of drug addiction. There are three main factors capable of inducing craving for drugs and triggering relapse long after cessation of drug use and dissipation of physical withdrawal signs: stress, re-exposure to the drug, and environmental stimuli (cues) that have been previously associated with drug use. The neurotransmitters dopamine and glutamate have been implicated in the modulation of drug-seeking behavior. The aim of this project was to examine the role of glutamatergic neurotransmission in relapse triggered by conditioned drug-associated stimuli. The focus was on clarifying whether relapse to drug seeking can be attenuated by blockade of glutamate receptors. In addition, as the nucleus accumbens has been proposed to participate in the modulation of drug-seeking behavior, the effects of glutamate receptor blockade in this brain structure on cue-induced relapse were investigated. The studies employed animals models in which rats were trained to press a lever in a test cage to obtain alcohol or intravenous cocaine. Drug availability was paired with distinct olfactory, auditory, or visual stimuli. This phase was followed by extinction training, during which lever presses did not result in the presentation of the drug or the drug-associated stimuli. Extinction training led to a gradual decrease in the number of lever presses during test sessions. Relapse was triggered by presenting the rats with the drug-associated stimuli in the absence of alcohol or cocaine. The drug-associated stimuli were alone capable of inducing resumption of lever pressing and maintaining this behavior during repeated testing. The number of lever presses during a session represented the intensity of drug-seeking and relapse behavior. The results suggest that glutamatergic neurotransmission is involved in the modulation of drug-seeking behavior. Both alcohol and cocaine relapse were attenuated by systemic pretreatment with glutamate receptor antagonists. However, differences were found in the ability of ionotropic AMPA/kainate and NMDA receptor antagonists to regulate drug-seeking behavior. The AMPA/kainate antagonists CNQX and NBQX, and L-701,324, an antagonist with affinity for the glycine site of the NMDA receptor, attenuated cue-induced drug seeking, whereas the competitive NMDA antagonist CGP39551 and the NMDA channel blocker MK-801 were without effect. MPEP, an antagonist at metabotropic mGlu5 glutamate receptors, also decreased drug seeking, but its administration was found to lead to conditioned suppression of behavior during subsequent treatment sessions, suggesting that MPEP may have undesirable side effects. The mGluR2/3 agonist LY379268 and the mGluR8 agonist (S)-3,4-DCPG decreased both cue-induced relapse to alcohol drinking and alcohol consumption. Control experiments showed however that administration of the agonists was accompanied by motor suppression limiting their usefulness. Administration of the AMPA/kainate antagonist CNQX, the NMDA antagonist D-AP5, and the mGluR5 antagonist MPEP into the nucleus accumbens resulted also in a decrease in drug-seeking behavior, suggesting that the nucleus accumbens is at least one of the anatomical sites regulating drug seeking and mediating the effects of glutamate receptor antagonists on this behavior.
Resumo:
Lidocaine is a widely used local anaesthetic agent that also has anti-arrhythmic effects. It is classified as a type Ib anti-arrhythmic agent and is used to treat ventricular tachycardia or ventricular fibrillation. Lidocaine is eliminated mainly by metabolism, and less than 5% is excreted unchanged in urine. Lidocaine is a drug with a medium to high extraction ratio, and its bioavailability is about 30%. Based on in vitro studies, the earlier understanding was that CYP3A4 is the major cytochrome P450 (CYP) enzyme involved in the metabolism of lidocaine. When this work was initiated, there was little human data on the effect of inhibitors of CYP enzymes on the pharmacokinetics of lidocaine. Because lidocaine has a low therapeutic index, medications that significantly inhibit lidocaine clearance (CL) could increase the risk of toxicity. These studies investigated the effects of some clinically important CYP1A2 and CYP3A4 inhibitors on the pharmacokinetics of lidocaine administered by different routes. All of the studies were randomized, double-blind, placebo-controlled cross-over studies in two or three phases in healthy volunteers. Pretreatment with clinically relevant doses of CYP3A4 inhibitors erythromycin and itraconazole or CYP1A2 inhibitors fluvoxamine and ciprofloxacin was followed by a single dose of lidocaine. Blood samples were collected to determine the pharmacokinetic parameters of lidocaine and its main metabolites monoethylglycinexylidide (MEGX) and 3-hydroxylidocaine (3-OH-lidocaine). Itraconazole and erythromycin had virtually no effect on the pharmacokinetics of intravenous lidocaine, but erythromycin slightly prolonged the elimination half-life (t½) of lidocaine (Study I). When lidocaine was taken orally, both erythromycin and itraconazole increased the peak concentration (Cmax) and the area under the concentration-time curve (AUC) of lidocaine by 40-70% (Study II). Compared with placebo and itraconazole, erythromycin increased the Cmax and the AUC of MEGX by 40-70% when lidocaine was given intravenously or orally (Studies I and II). The pharmacokinetics of inhaled lidocaine was unaffected by concomitant administration of itraconazole (Study III). Fluvoxamine reduced the CL of intravenous lidocaine by 41% and prolonged the t½ of lidocaine by 35%. The mean AUC of lidocaine increased 1.7-fold (Study IV). After oral administration of lidocaine, the mean AUC of lidocaine in-creased 3-fold and the Cmax 2.2-fold by fluvoxamine (Study V). During the pretreatment with fluvoxamine combined with erythromycin, the CL of intravenous lidocaine was 53% smaller than during placebo and 21% smaller than during fluvoxamine alone. The t½ of lidocaine was significantly longer during the combination phase than during the placebo or fluvoxamine phase. The mean AUC of intravenous lidocaine increased 2.3-fold and the Cmax 1.4-fold (Study IV). After oral administration of lidocaine, the mean AUC of lidocaine increased 3.6-fold and the Cmax 2.5-fold by concomitant fluvoxamine and erythromycin. The t½ of oral lidocaine was significantly longer during the combination phase than during the placebo (Study V). When lidocaine was given intravenously, the combination of fluvoxamine and erythromycin prolonged the t½ of MEGX by 59% (Study IV). Compared with placebo, ciprofloxacin increased the mean Cmax and AUC of intravenous lidocaine by 12% and 26%, respectively. The mean plasma CL of lidocaine was reduced by 22% and its t½ prolonged by 7% (Study VI). These studies clarify the principal role of CYP1A2 and suggest only a modest role of CYP3A4 in the elimination of lidocaine in vivo. The inhibition of CYP1A2 by fluvoxamine considerably reduces the elimination of lidocaine. Concomitant use of fluvoxamine and the CYP3A4 inhibitor erythromycin further increases lidocaine concentrations. The clinical implication of this work is that clinicians should be aware of the potentially increased toxicity of lidocaine when used together with inhibitors of CYP1A2 and particularly with the combination of drugs inhibiting both CYP1A2 and CYP3A4 enzymes.
Resumo:
Useiden lääkkeiden yhtäaikainen käyttö on nykyään hyvin yleistä, mikä lisää lääkeaineiden haitallisten yhteisvaikutusten riskiä. Lääkeaineiden poistumisessa elimistöstä ovat tärkeässä osassa niitä hajottavat (metaboloivat) maksan sytokromi P450 (CYP) entsyymit. Vasta aivan viime vuosina on havaittu, että CYP2C8-entsyymillä voi olla tärkeä merkitys mm. lääkeaineyhteisvaikutuksissa. Eräät lääkeaineet voivat estää (inhiboida) CYP2C8-entsyymin kautta tapahtuvaa metaboliaa. Tässä työssä selvitettiin CYP2C8-entsyymiä estävien lääkkeiden vaikutusta sellaisten lääkeaineiden pitoisuuksiin, joiden aikaisemman tiedon perusteella arveltiin metaboloituvan CYP2C8-välitteisesti. Näiden lääkeaineiden metaboliaa tutkittiin myös koeputkiolosuhteissa (in vitro -menetelmillä). Lisäksi CYP2C8-entsyymiä estävän lipidilääke gemfibrotsiilin yhteisvaikutusmekanismia tutkittiin selvittämällä interaktion säilymistä koehenkilöillä gemfibrotsiilin annostelun lopettamisen jälkeen. Yhteisvaikutuksia tutkittiin terveillä vapaaehtoisilla koehenkilöillä käyttäen vaihtovuoroista koeasetelmaa. Koehenkilöille annettiin CYP2C8-entsyymiä estävää lääkitystä muutaman päivän ajan ja tämän jälkeen kerta-annos tutkimuslääkettä. Koehenkilöiltä otettiin useita verinäytteitä, joista määritettiin lääkepitoisuudet nestekromatografisilla tai massaspektrometrisillä menetelmillä. Gemfibrotsiili nosti ripulilääke loperamidin pitoisuudet keskimäärin kaksinkertaiseksi. Gemfibrotsiili lisäsi, mutta vain hieman, kipulääke ibuprofeenin pitoisuuksia, eikä sillä ollut mitään vaikutusta unilääke tsopiklonin pitoisuuksiin toisin kuin aiemman kirjallisuuden perusteella oli odotettavissa. Toinen CYP2C8-estäjä, mikrobilääke trimetopriimi, nosti diabeteslääke pioglitatsonin pitoisuuksia keskimäärin noin 40 %. Gemfibrotsiili nosti diabeteslääke repaglinidin pitoisuudet 7-kertaiseksi ja tämä yhteisvaikutus säilyi lähes yhtä voimakkaana vielä 12 tunnin päähän viimeisestä gemfibrotsiiliannoksesta. Tehdyt havainnot ovat käytännön lääkehoidon kannalta merkittäviä ja ne selvittävät CYP2C8-entsyymin merkitystä useiden lääkkeiden metaboliassa. Gemfibrotsiilin tai muiden CYP2C8-entsyymiä estävien lääkkeiden yhteiskäyttö loperamidin kanssa voi lisätä loperamidin tehoa tai haittavaikutuksia. Toisaalta CYP2C8-entsyymin osuus tsopiklonin ja ibuprofeenin metaboliassa näyttää olevan pieni. Trimetopriimi nosti kohtalaisesti pioglitatsonin pitoisuuksia, ja kyseisten lääkkeiden yhteiskäyttö voi lisätä pioglitatsonin annosriippuvaisia haittavaikutuksia. Gemfibrotsiili-repaglinidi-yhteisvaikutuksen päämekanismi in vivo näyttää olevan CYP2C8-entsyymin palautumaton esto. Tämän vuoksi gemfibrotsiilin estovaikutus ja yhteisvaikutusriski säilyvät pitkään gemfibrotsiilin annostelun lopettamisen jälkeen, mikä tulee ottaa huomioon käytettäessä sitä CYP2C8-välitteisesti metaboloituvien lääkkeiden kanssa.
Resumo:
Objective: Patients with atopic dermatitis often have a poor long-term response to conventional topical or systemic treatments. Staphylococcal superinfections, skin atrophy due to corticosteroid use, and asthma and allergic rhinitis are common. Only a few, usually short-term, studies have addressed the effects of different treatments on these problems. Tacrolimus ointment is the first topical compound suitable for long-term treatment. The aim of this thesis was to evaluate the effects of long-term topical tacrolimus treatment on cutaneous staphylococcal colonization, collagen synthesis, and symptoms and signs of asthma and allergic rhinitis. Methods: Patients with moderate-to-severe atopic dermatitis were treated with intermittent 0.1% tacrolimus ointment in prospective, open studies lasting for 6 to 48 months. In Study I, cutaneous staphylococcal colonization was followed for 6 to 12 months. In Study II, skin thickness and collagen synthesis were followed by skin ultrasound and procollagen I and III propeptide concentrations of suction blister fluid samples for 12 to 24 months and compared with a group of corticosteroid-treated atopic dermatitis patients and with a group of healthy subjects. Study III was a cross-sectional study of the occurrence of respiratory symptoms, bronchial hyper-responsiveness, and sputum eosinophilia in atopic dermatitis patients and healthy controls. In Study V, the same parameters as in Study III were assessed in atopic dermatitis patients before and after 12 to 48 months of topical tacrolimus treatment. Study IV was a retrospective follow-up of the effect of tacrolimus 0.03% ointment on severe atopic blepharoconjunctivitis and conjunctival cytology. Results: The clinical response to topical tacrolimus was very good in all studies (p≤0.008). Staphylococcal colonization decreased significantly, and the effect was sustained throughout the study (p=0.01). Skin thickness (p<0.001) and markers of collagen synthesis (p<0.001) increased in the tacrolimus-treated patients significantly, whereas they decreased or remained unchanged in the corticosteroid-treated controls. Symptoms of asthma and allergic rhinitis (p<0.0001), bronchial hyper-responsiveness (p<0.0001), and sputum eosinophilia (p<0.0001) were significantly more common in patients with atopic dermatitis than in healthy controls, especially in subjects with positive skin prick tests or elevated serum immunoglobulin E. During topical tacrolimus treatment the asthma and rhinitis (p=0.005 and p=0.002) symptoms and bronchial hyper-responsiveness (p=0.02) decreased significantly, and serum immunoglobulin E and sputum eosinophils showed a decreasing trend in patients with the best treatment response. Treatment of atopic blepharoconjunctivitis resulted in a marked clinical response and a significant decrease in eosinophils, lymphocytes, and neutrophils in the conjunctival cytology samples. No significant adverse effects or increase in skin infections occurred in any study. Conclusions: The studies included in this thesis, except the study showing an increase in skin collagen synthesis in tacrolimus-treated patients, were uncontrolled, warranting certain reservations. The results suggest, however, that tacrolimus ointment has several beneficial effects in the long-term intermittent treatment of atopic dermatitis. Tacrolimus ointment efficiently suppresses the T cell-induced inflammation of atopic dermatitis. It has a normalizing effect on the function of the skin measured by the decrease in staphylococcal colonization. It does not cause skin atrophy as do corticosteroids but restores the skin collagen synthesis in patients who have used corticosteroids. Tacrolimus ointment has no marked systemic effect, as the absorption of the drug is minimal and decreases along with skin improvement. The effects on the airway: decrease in bronchial hyper-responsiveness and respiratory symptoms, can be speculated to be caused by the decrease in T cell trafficking from the skin to the respiratory tissues as the skin inflammation resolves, as well as inhibition of epicutaneous invasion of various antigens causing systemic sensitization when the skin barrier is disrupted as in atopic dermatitis. Patients with moderate-to-severe atopic dermatitis seem to benefit from efficient long-term treatment with topical tacrolimus.
Resumo:
Rest tremor, rigidity, and slowness of movements-considered to be mainly due to markedly reduced levels of dopamine (DA) in the basal ganglia-are characteristic motor symptoms of Parkinson's disease (PD). Although there is yet no cure for this illness, several drugs can alleviate the motor symptoms. Among these symptomatic therapies, L-dopa is the most effective. As a precursor to DA, it is able to replace the loss of DA in the basal ganglia. In the long run L-dopa has, however, disadvantages. Motor response complications, such as shortening of the duration of drug effect ("wearing-off"), develop in many patients. In addition, extensive peripheral metabolism of L-dopa by aromatic amino acid decarboxylase and catechol-O-methyltransferase (COMT) results in its short half-life, low bioavailability, and reduced efficacy. Entacapone, a nitrocatechol-structured compound, is a highly selective, reversible, and orally active inhibitor of COMT. It increases the bioavailability of L-dopa by reducing its peripheral elimination rate. Entacapone extends the duration of clinical response to each L-dopa dose in PD patients with wearing-off fluctuations. COMT is important in the metabolism of catecholamines. Its inhibition could, therefore, theoretically lead to adverse cardiovascular reactions, especially in circumstances of enhanced sympathetic activity (physical exercise). PD patients may be particularly vulnerable to such effects due to high prevalence of cardiovascular autonomic dysfunction, and the common use of monoamine oxidase B inhibitor selegiline, another drug with effects on catecholamine metabolism. Both entacapone and selegiline enhance L-dopa's clinical effect. Their co-administration may therefore lead to pharmacodynamic interactions, either beneficial (improved L-dopa efficacy) or harmful (increased dyskinesia). We investigated the effects of repeated dosing (3-5 daily doses for 1-2 weeks) of entacapone 200 mg administered either with or without selegiline (10 mg once daily), on several safety and efficacy parameters in 39 L-dopa-treated patients with mild to moderate PD in three double-blind placebo-controlled, crossover studies. In the first two, the cardiovascular, clinical, and biochemical responses were assessed repeatedly for 6 hours after drug intake, first with L-dopa only (control), and then after a 2 weeks on study drugs (entacapone vs. entacapone plus selegiline in one; entacapone vs. selegiline vs. entacapone plus selegiline in the other). The third study included cardiovascular reflex and spiroergometric exercise testing, first after overnight L-dopa withdrawal (control), and then after 1 week on entacapone plus selegiline as adjuncts to L-dopa. Ambulatory ECG was recorded in two of the studies. Blood pressure, heart rate, ECG, cardiovascular autonomic function, cardiorespiratory exercise responses, and the resting/exercise levels of circulating catecholamines remained unaffected by entacapone, irrespective of selegiline. Entacapone significantly enhanced both L-dopa bioavailability and its clinical response, the latter being more pronounced with the co-administration of selegiline. Dyskinesias were also increased during simultaneous use of both entacapone and selegiline as L-dopa adjuncts. Entacapone had no effect on either work capacity or work efficiency. The drug was well tolerated, both with and without selegiline. Conclusions: the use of entacapone-either alone or combined with selegiline-seems to be hemodynamically safe in L-dopa-treated PD patients, also during maximal physical effort. This is in line with the safety experience from larger phase III studies. Entacapone had no effect on cardiovascular autonomic function. Concomitant administration of entacapone and selegiline may enhance L-dopa's clinical efficacy but may also lead to increased dyskinesia.
Resumo:
Juvenile idiopathic arthritis (JIA) is a heterogeneous group of childhood chronic arthritides, associated with chronic uveitis in 20% of cases. For JIA patients responding inadequately to conventional disease-modifying anti-rheumatic drugs (DMARDs), biologic therapies, anti-tumor necrosis factor (anti-TNF) agents are available. In this retrospective multicenter study, 258 JIA-patients refractory to DMARDs and receiving biologic agents during 1999-2007 were included. Prior to initiation of anti-TNFs, growth velocity of 71 patients was delayed in 75% and normal in 25%. Those with delayed growth demonstrated a significant increase in growth velocity after initiation of anti-TNFs. Increase in growth rate was unrelated to pubertal growth spurt. No change was observed in skeletal maturation before and after anti-TNFs. The strongest predictor of change in growth velocity was growth rate prior to anti-TNFs. Change in inflammatory activity remained a significant predictor even after decrease in glucocorticoids was taken into account. In JIA-associated uveitis, impact of two first-line biologic agents, etanercept and infliximab, and second-line or third-line anti-TNF agent, adalimumab, was evaluated. In 108 refractory JIA patients receiving etanercept or infliximab, uveitis occurred in 45 (42%). Uveitis improved in 14 (31%), no change was observed in 14 (31%), and in 17 (38%) uveitis worsened. Uveitis improved more frequently (p=0.047) and frequency of annual uveitis flares was lower (p=0.015) in those on infliximab than in those on etanercept. In 20 patients taking adalimumab, 19 (95%) had previously failed etanercept and/or infliximab. In 7 patients (35%) uveitis improved, in one (5%) worsened, and in 12 (60%) no change occurred. Those with improved uveitis were younger and had shorter disease duration. Serious adverse events (AEs) or side-effects were not observed. Adalimumab was effective also in arthritis. Long-term drug survival (i.e. continuation rate on drug) with etanercept (n=105) vs. infliximab (n=104) was at 24 months 68% vs. 68%, and at 48 months 61% vs. 48% (p=0.194 in log-rank analysis). First-line anti-TNF agent was discontinued either due to inefficacy (etanercept 28% vs. infliximab 20%, p=0.445), AEs (7% vs. 22%, p=0.002), or inactive disease (10% vs. 16%, p=0.068). Females, patients with systemic JIA (sJIA), and those taking infliximab as the first therapy were at higher risk for treatment discontinuation. One-third switched to the second anti-TNF agent, which was discontinued less often than the first. In conclusion, in refractory JIA anti-TNFs induced enhanced growth velocity. Four-year treatment survival was comparable between etanercept and infliximab, and switching from first-line to second-line agent a reasonable therapeutic option. During anti-TNF treatment, one-third with JIA-associated anterior uveitis improved.
Resumo:
Organic anion-transporting polypeptide 1B1 (OATP1B1), encoded by the SLCO1B1 gene, is an influx transporter expressed on the sinusoidal membrane of human hepatocytes. The common c.521T>C (p.Val174Ala) single-nucleotide polymorphism (SNP) of the SLCO1B1 gene has been associated with reduced OATP1B1 transport activity in vitro and increased plasma concentrations of several of its substrate drugs in vivo in humans. Another common SNP of the SLCO1B1 gene, c.388A>G (p.Asn130Asp), defining the SLCO1B1*1B (c.388G-c.521T) haplotype, has been associated with increased OATP1B1 transport activity in vitro. The aim of this thesis was to investigate the role of SLCO1B1 polymorphism in the pharmacokinetics of the oral antidiabetic drugs repaglinide, nateglinide, rosiglitazone, and pioglitazone. Furthermore, the effect of the SLCO1B1 c.521T>C SNP on the extent of interaction between gemfibrozil and repaglinide as well as the role of the SLCO1B1 c.521T>C SNP in the potential interaction between atorvastatin and repaglinide were evaluated. Five crossover studies with 2-4 phases were carried out, with 20-32 healthy volunteers in each study. The effects of the SLCO1B1 c.521T>C SNP on single doses of repaglinide, nateglinide, rosiglitazone, and pioglitazone were investigated in Studies I and V. In Study II, the effects of the c.521T>C SNP on repaglinide pharmacokinetics were investigated in a dose-escalation study, with repaglinide doses ranging from 0.25 to 2 mg. The effects of the SLCO1B1*1B/*1B genotype on repaglinide and nateglinide pharmacokinetics were investigated in Study III. In Study IV, the interactions of gemfibrozil and atorvastatin with repaglinide were evaluated in relation to the c.521T>C SNP. Plasma samples were collected for drug concentration determinations. The pharmacodynamics of repaglinide and nateglinide was assessed by measuring blood glucose concentrations. The mean area under the plasma repaglinide concentration-time curve (AUC) was ~70% larger in SLCO1B1 c.521CC participants than in c.521TT participants (P ≤ 0.001), but no differences existed in the pharmacokinetics of nateglinide, rosiglitazone, and pioglitazone between the two genotype groups. In the dose-escalation study, the AUC of repaglinide was 60-110% (P ≤ 0.001) larger in c.521CC participants than in c.521TT participants after different repaglinide doses. Moreover, the AUC of repaglinide increased linearly with repaglinide dose in both genotype groups (r > 0.88, P 0.001). The AUC of repaglinide was ~30% lower in SLCO1B1*1B/*1B participants than in SLCO1B1*1A/*1A (c.388AA-c.521TT) participants (P = 0.007), but no differences existed in the AUC of nateglinide between the two genotype groups. In the drug-drug interaction study, the mean increase in the repaglinide AUC by gemfibrozil was ~50% (P = 0.002) larger in c.521CC participants than in c.521TT participants, but the relative (7-8-fold) increases in the repaglinide AUC did not differ significantly between the genotype groups. In c.521TT participants, atorvastatin increased repaglinide peak plasma concentration and AUC by ~40% (P = 0.001) and ~20% (P = 0.033), respectively. In each study, after repaglinide administration, there was a tendency towards lower blood glucose concentrations in c.521CC participants than in c.521TT participants. In conclusion, the SLCO1B1 c.521CC genotype is associated with increased and the SLCO1B1*1B/*1B genotype with decreased plasma concentrations of repaglinide, consistent with reduced and enhanced hepatic uptake, respectively. Inhibition of OATP1B1 plays a limited role in the interaction between gemfibrozil and repaglinide. Atorvastatin slightly raises plasma repaglinide concentrations, probably by inhibiting OATP1B1. The findings on the effect of SLCO1B1 polymorphism on the pharmacokinetics of the drugs studied suggest that in vivo in humans OATP1B1 significantly contributes to the hepatic uptake of repaglinide, but not to that of nateglinide, rosiglitazone, or pioglitazone. SLCO1B1 polymorphism may be associated with clinically significant differences in blood glucose-lowering response to repaglinide, but probably has no effect on the response to nateglinide, rosiglitazone, or pioglitazone.
Resumo:
The cytochrome P450 1A2 (CYP1A2) is one of the major metabolizing enzymes. The muscle relaxant tizanidine is a selective substrate of CYP1A2, and the non-steroidal anti-inflammatory drug (NSAID) rofecoxib was thought to modestly in-hibit it. Cases suggesting an interaction between tizanidine and rofecoxib had been reported, but the mechanism was unknown. Also other NSAIDs are often used in combination with muscle relaxants. The aims of this study were to investigate the effect of rofecoxib, several other NSAIDs and female sex steroids on CYP1A2 ac-tivity in vitro and in vivo, and to evaluate the predictability of in vivo inhibition based on in vitro data. In vitro, the effect of several NSAIDs, female sex steroids and model inhibitors on CYP1A2 activity was studied in human liver microsomes, without and with preincubation. In placebo controlled, cross-over studies healthy volunteers ingested a single dose of tizanidine after a pretreament with the inhibitor (rofecoxib, tolfenamic acid or celecoxib) or placebo. Plasma (and urine) concentrations of tizanidine and its metabolites were measured, and the pharmacodynamic effects were recorded. A caffeine test was also performed. In vitro, fluvoxamine, tolfenamic acid, mefenamic acid and rofecoxib potently in-hibited CYP1A2. Ethinylestradiol, celecoxib, desogestrel and zolmitriptan were moderate, and etodolac, ciprofloxacin, etoricoxib and gestodene were weak inhibi-tors of CYP1A2. At 100 µM, other tested NSAIDs and steroids inhibited CYP1A2 less than 35%. Rofecoxib was found to be a mechanism-based inhibitor of CYP1A2. In vivo, rofecoxib greatly increased the plasma concentrations (over ten-fold) and the pharmacodynamic effects of tizanidine. Also the metabolism of caf-feine was impaired by rofecoxib. Despite the relatively strong in vitro CYP1A2 inhibitory effects, tolfenamic acid and celecoxib did not have a significant effect on tizanidine and caffeine concentrations in humans. Competitive inhibition model and the free plasma concentration of the inhibitor predicted well the effect of fluvoxam-ine and the lack of effect of tolfenamic acid and celecoxib on tizanidine concentra-tions in humans, and mechanism-based inhibition model explained the effects of rofecoxib. However, the effects of ciprofloxacin and oral contraceptives were un-derestimated from the in vitro data. Rofecoxib is a potent mechanism-based inhibitor of CYP1A2 in vitro and in vivo. This mechanism may be involved in the adverse cardiovascular effects of rofecoxib. Tolfenamic acid and celecoxib seem to be safe in combination with tizanidine, but mefenamic acid might have some effect on tizanidine concentrations in vivo. Con-sidering the mechanism of inhibition, and using the free plasma concentration of the inhibitor, many but not all CYP1A2 interactions can be predicted from in vitro data.