19 resultados para Strata Title Sub-division
em Helda - Digital Repository of University of Helsinki
Resumo:
This thesis discusses the use of sub- and supercritical fluids as the medium in extraction and chromatography. Super- and subcritical extraction was used to separate essential oils from herbal plant Angelica archangelica. The effect of extraction parameters was studied and sensory analyses of the extracts were done by an expert panel. The results of the sensory analyses were compared to the analytically determined contents of the extracts. Sub- and supercritical fluid chromatography (SFC) was used to separate and purify high-value pharmaceuticals. Chiral SFC was used to separate the enantiomers of racemic mixtures of pharmaceutical compounds. Very low (cryogenic) temperatures were applied to substantially enhance the separation efficiency of chiral SFC. The thermodynamic aspects affecting the resolving ability of chiral stationary phases are briefly reviewed. The process production rate which is a key factor in industrial chromatography was optimized by empirical multivariate methods. General linear model was used to optimize the separation of omega-3 fatty acid ethyl esters from esterized fish oil by using reversed-phase SFC. Chiral separation of racemic mixtures of guaifenesin and ferulic acid dimer ethyl ester was optimized by using response surface method with three variables per time. It was found that by optimizing four variables (temperature, load, flowate and modifier content) the production rate of the chiral resolution of racemic guaifenesin by cryogenic SFC could be increased severalfold compared to published results of similar application. A novel pressure-compensated design of industrial high pressure chromatographic column was introduced, using the technology developed in building the deep-sea submersibles (Mir 1 and 2). A demonstration SFC plant was built and the immunosuppressant drug cyclosporine A was purified to meet the requirements of US Pharmacopoeia. A smaller semi-pilot size column with similar design was used for cryogenic chiral separation of aromatase inhibitor Finrozole for use in its development phase 2.
Resumo:
The present research is an investigation into the corpus of personal names and titles that are found in sources from the Middle Mongolian period, that is the time from the 13th to the beginning of the 15th century. The entry for every name or title has been divided into three parts: occurence(s) of a given name in Middle Mongolian sources (primary sources), etymology, and occurence(s) in sources other than Middle Mongolian (secondary sources). Culturally and lingistically the corpus can be divided into six sub-groups: Mongolian, Turkic (Old, Middle and Modern), Arabo-Persian (Islamic), Indo-Iranian and Tibetan (Buddhist), as well as Chinese. Among these, the largest group is formed by Mongolian and Turkic, followed by Chinese (mostly titles), Indo-Iranian, Arabo-Persian and Tibetan. With regard to the primary and secondary occurences the research is based mainly on primary sources including text-publications and dictionaries. Every name or title is documented as completely as possible within a Central Asian framework. However, due to the divergency of the sources available as well as diachronical importance, each sub-group has been dealt with slightly differently, but consistently. The corpus of investigated names and titles gives a fairly correct picture of the multi-ethnical composition of the Mongolian world-empire. It also shows the foreign influences on Mongolian names and titles, being in this respect a mirror of the influences that are visible in other parts of the Middle Mongolian culture too. Furthermore, the investigated corpus reflects the transitory stage of the 13th to 15th century in Central Asian history, and includes thus material from the past (Indo-Iranian, Old and Middle Turkic), and material that points to the future (Arabo-Persian, Tibetan, Modern Turkic).
Resumo:
Class II division 1 malocclusion occurs in 3.5 to 13 percent of 7 12 year-old children. It is the most common reason for orthodontic treatment in Finland. Correction is most commonly performed using headgear treatment. The aim of this study was to investigate the effects of cervical headgear treatment on dentition, facial skeletal and soft tissue growth, and upper airway structure, in children. 65 schoolchildren, 36 boys and 29 girls were studied. At the onset of treatment a mean age was 9.3 (range 6.6 12.4) years. All the children were consequently referred to an orthodontist because of Class II division 1 malocclusion. The included children had protrusive maxilla and an overjet of more than 2mm (3 to 11 mm). The children were treated with a Kloehn-type cervical headgear as the only appliance until Class I first molar relationships were achieved. The essential features of the headgear were cervical strong pulling forces, a long upward bent outer bow, and an expanded inner bow. Dental casts and lateral and posteroanterior cephalograms were taken before and after the treatment. The results were compared to a historical, cross-sectional Finnish cohort or to historical, age- and sex-matched normal Class I controls. The Class I first molar relationships were achieved in all the treated children. The mean treatment time was 1.7 (range 0.3-3.1) years. Phase 2 treatments were needed in 52% of the children, most often because of excess overjet or overbite. The treatment decreased maxillary protrusion by inhibiting alveolar forward growth, while the rest of the maxilla and mandible followed normal growth. The palate rotated anteriorly downward. The expansion of the inner bow of the headgear induced widening of the maxilla, nasal cavity, and the upper and lower dental arches. Class II malocclusion was associated with narrower oro- and hypopharyngeal space than in the Class I normal controls. The treatment increased the retropalatal airway space, while the rest of the airway remained unaffected. The facial profile improved esthetically, while the facial convexity decreased. Facial soft tissues masked the facial skeletal convexity, and the soft tissue changes were smaller than skeletal changes. In conclusion, the headgear treatment with the expanded inner bow may be used as an easy and simple method for Class II correction in growing children.
Resumo:
Screening of wastewater effluents from municipal and industrial wastewater treatment plants with biotests showed that the treated wastewater effluents possess only minor acute toxic properties towards whole organisms (e.g. bacteria, algae, daphnia), if any. In vitro tests (sub-mitochondrial membranes and fish hepatocytes) were generally more susceptible to the effluents. Most of the effluents indicated the presence of hormonally active compounds, as the production of vitellogenin, an egg yolk precursor protein, was induced in fish hepatocytes exposed to wastewater. In addition, indications of slight genotoxic potential was found in one effluent concentrate with a recombinant bacteria test. Reverse electron transport (RET) of mitochondrial membranes was used as a model test to conduct effluent assessment followed by toxicant characterisations and identifications. Using a modified U.S. EPA Toxicity Identification Evaluation Phase I scheme and additional case-specific methods, the main compound in a pulp and paper mill effluent causing RET inhibition was characterised to be an organic, relatively hydrophilic high molecular weight (HMW) compound. The toxicant could be verified as HMW lignin by structural analyses using nuclear magnetic resonance. In the confirmation step commercial and in-house extracted lignin products were used. The possible toxicity related structures were characterised by statistical analysis of the chemical breakdown structures of laboratory-scale pulping and bleaching effluents and the toxicities of these effluents. Finally, the biological degradation of the identified toxicant and other wastewater constituents was evaluated using bioassays in combination with chemical analyses. Biological methods have not been used routinely in establishing effluent discharge limits in Finland. However, the biological effects observed in this study could not have been predicted using only routine physical and chemical effluent monitoring parameters. Therefore chemical parameters cannot be considered to be sufficient in controlling effluent discharges especially in case of unknown, possibly bioaccumulative, compounds that may be present in small concentrations and may cause chronic effects.
Resumo:
Plasma membrane adopts myriad of different shapes to carry out essential cellular processes such as nutrient uptake, immunological defence mechanisms and cell migration. Therefore, the details how different plasma membrane structures are made and remodelled are of the upmost importance. Bending of plasma membrane into different shapes requires substantial amount of force, which can be provided by the actin cytoskeleton, however, the molecules that regulate the interplay between the actin cytoskeleton and plasma membrane have remained elusive. Recent findings have placed new types of effectors at sites of plasma membrane remodelling, including BAR proteins, which can directly bind and deform plasma membrane into different shapes. In addition to their membrane-bending abilities, BAR proteins also harbor protein domains that intimately link them to the actin cytoskeleton. The ancient BAR domain fold has evolved into at least three structurally and functionally different sub-groups: the BAR, F-BAR and I-BAR domains. This thesis work describes the discovery and functional characterization of the Inverse-BAR domains (I-BARs). Using synthetic model membranes, we have shown that I-BAR domains bind and deform membranes into tubular structures through a binding-surface composed of positively charged amino acids. Importantly, the membrane-binding surface of I-BAR domains displays an inverse geometry to that of the BAR and F-BAR domains, and these structural differences explain why I-BAR domains induce cell protrusions whereas BAR and most F-BAR domains induce cell invaginations. In addition, our results indicate that the binding of I-BAR domains to membranes can alter the spatial organization of phosphoinositides within membranes. Intriguingly, we also found that some I-BAR domains can insert helical motifs into the membrane bilayer, which has important consequences for their membrane binding/bending functions. In mammals there are five I-BAR domain containing proteins. Cell biological studies on ABBA revealed that it is highly expressed in radial glial cells during the development of the central nervous system and plays an important role in the extension process of radial glia-like C6R cells by regulating lamellipodial dynamics through its I-BAR domain. To reveal the role of these proteins in the context of animals, we analyzed MIM knockout mice and found that MIM is required for proper renal functions in adult mice. MIM deficient mice displayed a severe urine concentration defect due to defective intercellular junctions of the kidney epithelia. Consistently, MIM localized to adherens junctions in cultured kidney epithelial cells, where it promoted actin assembly through its I-BAR andWH2 domains. In summary, this thesis describes the mechanism how I-BAR proteins deform membranes and provides information about the biological role of these proteins, which to our knowledge are the first proteins that have been shown to directly deform plasma membrane to make cell protrusions.
Resumo:
It is widely accepted that the global climate is heating up due to human activities, such as burning of fossil fuels. Therefore we find ourselves forced to make decisions on what measures, if any, need to be taken to decrease our warming effect on the planet before any irrevocable damage occurs. Research is being conducted in a variety of fields to better understand all relevant processes governing Earth s climate, and to assess the relative roles of anthropogenic and biogenic emissions into the atmosphere. One of the least well quantified problems is the impact of small aerosol particles (both of anthropogenic and biogenic origin) on climate, through reflecting solar radiation and their ability to act as condensation nuclei for cloud droplets. In this thesis, the compounds driving the biogenic formation of new particles in the atmosphere have been examined through detailed measurements. As directly measuring the composition of these newly formed particles is extremely difficult, the approach was to indirectly study their different characteristics by measuring the hygroscopicity (water uptake) and volatility (evaporation) of particles between 10 and 50 nm. To study the first steps of the formation process in the sub-3 nm range, the nucleation of gaseous precursors to small clusters, the chemical composition of ambient naturally charged ions were measured. The ion measurements were performed with a newly developed mass spectrometer, which was first characterized in the laboratory before being deployed at a boreal forest measurement site. It was also successfully compared to similar, low-resolution instruments. The ambient measurements showed that sulfuric acid clusters dominate the negative ion spectrum during new particle formation events. Sulfuric acid/ammonia clusters were detected in ambient air for the first time in this work. Even though sulfuric acid is believed to be the most important gas phase precursor driving the initial cluster formation, measurements of the hygroscopicity and volatility of growing 10-50 nm particles in Hyytiälä showed an increasing role of organic vapors of a variety of oxidation levels. This work has provided additional insights into the compounds participating both in the initial formation and subsequent growth of atmospheric new aerosol particles. It will hopefully prove an important step in understanding atmospheric gas-to-particle conversion, which, by influencing cloud properties, can have important climate impacts. All available knowledge needs to be constantly updated, summarized, and brought to the attention of our decision-makers. Only by increasing our understanding of all the relevant processes can we build reliable models to predict the long-term effects of decisions made today.
Resumo:
Atmospheric aerosol particles have a strong impact on the global climate. A deep understanding of the physical and chemical processes affecting the atmospheric aerosol climate system is crucial in order to describe those processes properly in global climate models. Besides the climatic effects, aerosol particles can deteriorate e.g. visibility and human health. Nucleation is a fundamental step in atmospheric new particle formation. However, details of the atmospheric nucleation mechanisms have remained unresolved. The main reason for that has been the non-existence of instruments capable of measuring neutral newly formed particles in the size range below 3 nm in diameter. This thesis aims to extend the detectable particle size range towards close-to-molecular sizes (~1nm) of freshly nucleated clusters, and by direct measurement obtain the concentrations of sub-3 nm particles in atmospheric environment and in well defined laboratory conditions. In the work presented in this thesis, new methods and instruments for the sub-3 nm particle detection were developed and tested. The selected approach comprises four different condensation based techniques and one electrical detection scheme. All of them are capable to detect particles with diameters well below 3 nm, some even down to ~1 nm. The developed techniques and instruments were deployed in the field measurements as well as in laboratory nucleation experiments. Ambient air studies showed that in a boreal forest environment a persistent population of 1-2 nm particles or clusters exists. The observation was done using 4 different instruments showing a consistent capability for the direct measurement of the atmospheric nucleation. The results from the laboratory experiments showed that sulphuric acid is a key species in the atmospheric nucleation. The mismatch between the earlier laboratory data and ambient observations on the dependency of nucleation rate on sulphuric acid concentration was explained. The reason was shown to be associated in the inefficient growth of the nucleated clusters and in the insufficient detection efficiency of particle counters used in the previous experiments. Even though the exact molecular steps of nucleation still remain an open question, the instrumental techniques developed in this work as well as their application in laboratory and ambient studies opened a new view into atmospheric nucleation and prepared the way for investigating the nucleation processes with more suitable tools.
Resumo:
The current study is a longitudinal investigation into changes in the division of household labour across transitions to marriage and parenthood in the UK. Previous research has noted a more traditional division of household labour, with women performing the majority of housework, amongst spouses and couples with children. However, the bulk of this work has been cross-sectional in nature. The few longitudinal studies that have been carried out have been rather ambiguous about the effect of marriage and parenthood on the division of housework. Theoretically, this study draws on gender construction theory. The key premise of this theory is that gender is something that is performed and created in interaction, and, as a result, something fluid and flexible rather than fixed and stable. The idea that couples ‘do gender’ through housework has been a major theoretical breakthrough. Gender-neutral explanations of the division of household labour, positing rational acting individuals, have failed to explicate why women continue to perform an unequal share of housework, regardless of socio-economic status. Contrastingly, gender construction theory situates gender as the key process in dividing household labour. By performing and avoiding certain housework chores, couples fulfill social norms of what it means to be a man and a woman although, given the emphasis on human agency in producing and contesting gender, couples are able to negotiate alternative gender roles which, in turn, feed back into the structure of social norms in an ever-changing societal landscape. This study adds extra depth to the doing gender approach by testing whether or not couples negotiate specific conjugal and parent roles in terms of the division of household labour. Both transitions hypothesise a more traditional division of household labour. Data comes from the British Household Panel Survey, a large, nationally representative quantitative survey that has been carried out annually since 1991. Here, data tracks the same 776 couples at two separate time points – 1996 and 2005. OLS regression is used to test whether or not transitions to marriage and parenthood have a significant impact on the division of household labour whilst controlling for host of relevant socio-economic factors. Results indicate that marriage has no significant effect on how couples partition housework. Those couples making the transition from cohabitation to marriage do not show significant changes in housework arrangements from those couples who remain cohabiting in both waves. On the other hand, becoming parents does lead to a more traditional division of household labour whilst controlling for socio-economic factors which accompany the move to parenthood. There is then some evidence that couples use the site of household labour to ‘do parenthood’ and generate identities which both use and inform socially prescribed notions of what it means to be a mother and a father. Support for socio-economic explanations of the division of household labour was mixed although it remains clear that they, alone, cannot explain how households divide housework.
Resumo:
Aerosol particles deteriorate air quality, atmospheric visibility and our health. They affect the Earth s climate by absorbing and scattering sunlight, forming clouds, and also via several feed-back mechanisms. The net effect on the radiative balance is negative, i.e. cooling, which means that particles counteract the effect of greenhouse gases. However, particles are one of the poorly known pieces in the climate puzzle. Some of the airborne particles are natural, some anthropogenic; some enter the atmosphere in particle form, while others form by gas-to-particle conversion. Unless the sources and dynamical processes shaping the particle population are quantified, they cannot be incorporated into climate models. The molecular level understanding of new particle formation is still inadequate, mainly due to the lack of suitable measurement techniques to detect the smallest particles and their precursors. This thesis has contributed to our ability to measure newly formed particles. Three new condensation particle counter applications for measuring the concentration of nano-particles were developed. The suitability of the methods for detecting both charged and electrically neutral particles and molecular clusters as small as 1 nm in diameter was thoroughly tested both in laboratory and field conditions. It was shown that condensation particle counting has reached the size scale of individual molecules, and besides measuring the concentration they can be used for getting size information. In addition to atmospheric research, the particle counters could have various applications in other fields, especially in nanotechnology. Using the new instruments, the first continuous time series of neutral sub-3 nm particle concentrations were measured at two field sites, which represent two different kinds of environments: the boreal forest and the Atlantic coastline, both of which are known to be hot-spots for new particle formation. The contribution of ions to the total concentrations in this size range was estimated, and it could be concluded that the fraction of ions was usually minor, especially in boreal forest conditions. Since the ionization rate is connected to the amount of cosmic rays entering the atmosphere, the relative contribution of neutral to charged nucleation mechanisms extends beyond academic interest, and links the research directly to current climate debate.