18 resultados para NEONATAL SCREENING
em Helda - Digital Repository of University of Helsinki
Resumo:
Solid materials can exist in different physical structures without a change in chemical composition. This phenomenon, known as polymorphism, has several implications on pharmaceutical development and manufacturing. Various solid forms of a drug can possess different physical and chemical properties, which may affect processing characteristics and stability, as well as the performance of a drug in the human body. Therefore, knowledge and control of the solid forms is fundamental to maintain safety and high quality of pharmaceuticals. During manufacture, harsh conditions can give rise to unexpected solid phase transformations and therefore change the behavior of the drug. Traditionally, pharmaceutical production has relied on time-consuming off-line analysis of production batches and finished products. This has led to poor understanding of processes and drug products. Therefore, new powerful methods that enable real time monitoring of pharmaceuticals during manufacturing processes are greatly needed. The aim of this thesis was to apply spectroscopic techniques to solid phase analysis within different stages of drug development and manufacturing, and thus, provide a molecular level insight into the behavior of active pharmaceutical ingredients (APIs) during processing. Applications to polymorph screening and different unit operations were developed and studied. A new approach to dissolution testing, which involves simultaneous measurement of drug concentration in the dissolution medium and in-situ solid phase analysis of the dissolving sample, was introduced and studied. Solid phase analysis was successfully performed during different stages, enabling a molecular level insight into the occurring phenomena. Near-infrared (NIR) spectroscopy was utilized in screening of polymorphs and processing-induced transformations (PITs). Polymorph screening was also studied with NIR and Raman spectroscopy in tandem. Quantitative solid phase analysis during fluidized bed drying was performed with in-line NIR and Raman spectroscopy and partial least squares (PLS) regression, and different dehydration mechanisms were studied using in-situ spectroscopy and partial least squares discriminant analysis (PLS-DA). In-situ solid phase analysis with Raman spectroscopy during dissolution testing enabled analysis of dissolution as a whole, and provided a scientific explanation for changes in the dissolution rate. It was concluded that the methods applied and studied provide better process understanding and knowledge of the drug products, and therefore, a way to achieve better quality.
Resumo:
A population-based early detection program for breast cancer has been in progress in Finland since 1987. According to regulations during the study period 1987-2001, free of charge mammography screening was offered every second year to women aged 50-59 years. Recently, the screening service was decided to be extended to age group 50-69. However, the scope of the program is still frequently discussed in public and information about potential impacts of mass-screening practice changes on future breast cancer burden is required. The aim of this doctoral thesis is to present methodologies for taking into account the mass-screening invitation information in breast cancer burden predictions, and to present alternative breast cancer incidence and mortality predictions up to 2012 based on scenarios of the future screening policy. The focus of this work is not on assessing the absolute efficacy but the effectiveness of mass-screening, and, by utilizing the data on invitations, on showing the estimated impacts of changes in an existing screening program on the short-term predictions. The breast cancer mortality predictions are calculated using a model that combines incidence, cause-specific and other cause survival on individual level. The screening invitation data are incorporated into modeling of breast cancer incidence and survival by dividing the program into separate components (first and subsequent rounds and years within them, breaks, and post screening period) and defining a variable that gives the component of the screening program. The incidence is modeled using a Poisson regression approach and the breast cancer survival by applying a parametric mixture cure model, where the patient population is allowed to be a combination of cured and uncured patients. The patients risk to die from other causes than breast cancer is allowed to differ from that of a corresponding general population group and to depend on age and follow-up time. As a result, the effects of separate components of the screening program on incidence, proportion of cured and the survival of the uncured are quantified. According to the predictions, the impacts of policy changes, like extending the program from age group 50-59 to 50-69, are clearly visible on incidence while the effects on mortality in age group 40-74 are minor. Extending the screening service would increase the incidence of localized breast cancers but decrease the rates of non-localized breast cancer. There were no major differences between mortality predictions yielded by alternative future scenarios of the screening policy: Any policy change would have at the most a 3.0% reduction on overall breast cancer mortality compared to continuing the current practice in the near future.
Resumo:
A randomised and population-based screening design with new technologies has been applied to the organised cervical cancer screening programme in Finland. In this experiment the women invited to routine five-yearly screening are individually randomised to be screened with automation-assisted cytology, human papillomavirus (HPV) test or conventional cytology. By using the randomised design, the ultimate aim is to assess and compare the long-term outcomes of the different screening regimens. The primary aim of the current study was to evaluate, based on the material collected during the implementation phase of the Finnish randomised screening experiment, the cross-sectional performance and validity of automation-assisted cytology (Papnet system) and primary HPV DNA testing (Hybrid Capture II assay for 13 oncogenic HPV types) within service screening, in comparison to conventional cytology. The parameters of interest were test positivity rate, histological detection rate, relative sensitivity, relative specificity and positive predictive value. Also, the effect of variation in performance by screening laboratory on age-adjusted cervical cancer incidence was assessed. Based on the cross-sectional results, almost no differences were observed in the performance of conventional and automation-assisted screening. Instead, primary HPV screening found 58% (95% confidence interval 19-109%) more cervical lesions than conventional screening. However, this was mainly due to overrepresentation of mild- and moderate-grade lesions and, thus, is likely to result in overtreatment since a great deal of these lesions would never progress to invasive cancer. Primary screening with an HPV DNA test alone caused substantial loss in specificity in comparison to cytological screening. With the use of cytology triage test, the specificity of HPV screening improved close to the level of conventional cytology. The specificity of primary HPV screening was also increased by increasing the test positivity cutoff from the level recommended for clinical use, but the increase was more modest than the one gained with the use of cytology triage. The performance of the cervical cancer screening programme varied widely between the screening laboratories, but the variation in overall programme effectiveness between respective populations was more marginal from the very beginning of the organised screening activity. Thus, conclusive interpretations on the quality or success of screening should not be based on performance parameters only. In the evaluation of cervical cancer screening the outcome should be selected as closely as possible to the true measure of programme effectiveness, which is the number of invasive cervical cancers and subsequent deaths prevented in the target population. The evaluation of benefits and adverse effects of each new suggested screening technology should be performed before the technology becomes an accepted routine in the existing screening programme. At best, the evaluation is performed randomised, within the population and screening programme in question, which makes the results directly applicable to routine use.
Resumo:
Premature delivery is a major cause of neonatal morbidity and mortality. The incidence of premature deliveries has increased around the world. In Finland 5.3%, or about 3,000 children per year are born prematurely, before 37 weeks of gestation. The corresponding figure in the United States is about 13%. The morbidity and mortality are highest among infants delivered before 32 weeks of gestation - about 600 children each year in Finland. Approximately 70% of premature deliveries are unexplained. Preterm delivery can be caused by an asympto-matic infection between uterus and the fetal membranes, such can begin already in early pregnancy. It is difficult to predict preterm delivery, and many patients are therefore unnecessarily admitted to hospital for observation and exposed to medical treatments. On the other hand, the high risk women should be identified early for the best treatment of the mother and preterm infant. --- In the prospective study conducted at the Department of Obstetric and Gynecology, Helsinki University Central Hospital two biochemical inflammation related markers were measured in the lower genital tract fluids of asymp-tomatic women in early and mid pregnancy in an order to see whether these markers could identify women with an increased risk of preterm delivery. These biomarkers were phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) and matrix metalloproteinase-8 (MMP-8). The study involved 5180 asymptomatic pregnant women, examined during the first and second ultrasound screening visits. The study samples were taken from the vagina and cervicix. In addition, 246 symptomatic women were studied (pregnancy weeks 22 – 34). The study showed that increased phIGFBP-1 concentration in cervical canal fluid in early pregnancy increased the risk for preterm delivery. The risk for very premature birth (before 32 weeks of gestation) was nearly four-fold. Low MMP-8 concentration in mid pregnancy increased the risk of subsequent premature preterm rupture of fetal membranes (PPROM). Significantly high MMP-8 concentrations in the cervical fluid increased the risk for prema-ture delivery initiated by preterm labour with intact membranes. Among women with preterm contractions the shortened cervical length measured by ultrasound and elevated cervical fluid phIGFBP-1 both predicted premature delivery. In summary, because of the relatively low sensitivity of cervical fluid phIGFBP-1 this biomarker is not suitable for routine screening, but provides an additional tool in assessing the risk of preterm delivery. Cervical fluid MMP-8 is not useful in early or mid pregnancy in predicting premature delivery because of its dual role. Further studies on the role of MMP-8 are therefore needed. Our study confirms that phIGFBP-1 testing is useful in predicting pre-term delivery.
Resumo:
Background: Both maternal and fetal complications are increased in diabetic pregnancies. Although hypertensive complications are increased in pregnant women with pregestational diabetes, reports on hypertensive complications in women with gestational diabetes mellitus (GDM) have been contradictory. Congenital malformations and macrosomia are the main fetal complications in Type 1 diabetic pregnancies, whereas fetal macrosomia and birth trauma but not congenital malformations are increased in GDM pregnancies. Aims: To study the frequency of hypertensive disorders in gestational diabetes mellitus. To evaluate the risk of macrosomia and brachial plexus injury (Erb’s palsy) and the ability of the 2-hour glucose tolerance test (OGTT) combined with the 24-hour glucose profile to distinguish between low and high risks of fetal macrosomia among women with GDM. To evaluate the relationship between glycemic control and the risk of fetal malformations in pregnancies complicated by Type 1 diabetes mellitus. To assess the effect of glycemic control on the occurrence of preeclampsia and pregnancy-induced hypertension in Type 1 diabetic pregnancies. Subjects: A total of 986 women with GDM and 203 women with borderline glucose intolerance (one abnormal value in the OGTT) with a singleton pregancy, 488 pregnant women with Type 1 diabetes (691 pregnancies and 709 offspring), and 1154 pregnant non-diabetic women (1181 pregnancies and 1187 offspring) were investigated. Results: In a prospective study on 81 GDM patients the combined frequency of preeclampsia and PIH was higher than in 327 non-diabetic controls (19.8% vs 6.1%, p<0.001). On the other hand, in 203 women with only one abnormal value in the OGTT, the rate of hypertensive complications did not differ from that of the controls. Both GDM women and those with only one abnormal value in the OGTT had higher pre-pregnancy weights and BMIs than the controls. In a retrospective study involving 385 insulin-treated and 520 diet-treated GDM patients, and 805 non-diabetic control pregnant women, fetal macrosomia occurred more often in the insulin-treated GDM pregnancies (18.2%, p<0.001) than in the diet-treated GDM pregnancies (4.4%), or the control pregnancies (2.2%). The rate of Erb’s palsy in vaginally delivered infants was 2.7% in the insulin-treated group of women and 2.4% in the diet-treated women compared with 0.3% in the controls (p<0.001). The cesarean section rate was more than twice as high (42.3% vs 18.6%) in the insulin-treated GDM patients as in the controls. A major fetal malformation was observed in 30 (4.2%) of the 709 newborn infants in Type 1 diabetic pregnancies and in 10 (1.4%) of the 735 controls (RR 3.1, 95% CI 1.6–6.2). Even women whose levels of HbA1c (normal values less than 5.6%) were only slightly increased in early pregnancy (between 5.6 and 6.8%) had a relative risk of fetal malformation of 3.0 (95% CI 1.2–7.5). Only diabetic patients with a normal HbA1c level (<5.6%) in early pregnancy had the same low risk of fetal malformations as the controls. Preeclampsia was diagnosed in 12.8% and PIH in 11.4% of the 616 Type 1 diabetic women without diabetic nephropathy. The corresponding frequencies among the 854 control women were 2.7% (OR 5.2; 95% CI 3.3–8.4) for preeclampsia and 5.6% (OR 2.2, 95% CI 1.5–3.1) for PIH. Multiple logistic regression analysis indicated that glycemic control, nulliparity, diabetic retinopathy and duration of diabetes were statistically significant independent predictors of preeclampsia. The adjusted odds ratios for preeclampsia were 1.6 (95% CI 1.3–2.0) for each 1%-unit increment in the HbA1c value during the first trimester and 0.6 (95% CI 0.5–0.8) for each 1%-unit decrement during the first half of pregnancy. In contrast, changes in glycemic control during the second half of pregnancy did not alter the risk of preeclampsia. Conclusions: In type 1 diabetic pregnancies it is extremely important to achieve optimal glycemic control before pregnancy and maintain it throughout pregnancy in order to decrease the complication rates both in the mother and in her offspring. The rate of fetal macrosomia and birth trauma in GDM pregnancies, especially in the group of insulin-treated women, is still relatively high. New strategies for screening, diagnosing, and treatment of GDM must be developed in order to decrease fetal and neonatal complications.