3 resultados para Los Angeles, California.

em Helda - Digital Repository of University of Helsinki


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dissertation analyzes and elaborates upon the changing map of U.S. ethno-racial formation from the vantage point of North American Studies, multi-disciplinary cultural studies, and the criticism of visual culture. The focus is on four contemporary Mexican American (Chicana) women photographers, whose art production is discussed, on the one hand, in the context of the Euro-American history of photographic genres and, on the other hand, in the context of so-called decolonizing cultural and academic discourses produced by Mexican Americans themselves. The manuscript consists of two parts. Part I outlines the theoretical and methodological domain of the study, positioning it in the interstices of American studies, European postmodern criticism, postcolonial feminist theory, and the theories of visual culture, particularly of art photography. In addition, the main issues and paradigms of Chicano Studies (Mexican American ethnic studies) are introduced. Part II consists of seven essays, each of which discusses rather independently a particular photographic work or a series of photographs, formulating and defending arguments about their meaning, position in the history of photographic genres, and their cultural and socio-political significance. The study closes with a discussion about ethno-racial identity formation and the role of Chicana photography therein - in embodying and reproducing new subjectivities, alternative categories of knowledge, and open ended historical narratives. It is argued that, symbolically, the "Wild Zone" of gendered and race-specific knowledge becomes associated with the body of the mother, a recurrent image in Chicana art works under discussion. Embedded in this image, the construction of an alternative notion of a family thus articulates the parameters of a matrifocal ethno-racial community unified by the proliferation of differences rather than by conformities typical of nationalistic ideologies. While focusing on art photography, the study as a whole simultaneously constructs, from a European vantage point, a "thick" description of Mexican American history, identities, communities, cultural practices, and self-representations about which very little is known in Finland.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Meckel syndrome (MKS, MIM 249000) is an autosomal recessive developmental disorder causing death in utero or shortly after birth. The hallmarks of the disease are cystic kidney dysplasia and fibrotic changes of the liver, occipital encephalocele with or without hydrocephalus and polydactyly. Other anomalies frequently seen in the patients are incomplete development of the male genitalia, club feet and cleft lip or palate. The clinical picture has been well characterized in the literature while the molecular pathology underlying the disease has remained unclear until now. In this study we identified the first MKS gene by utilizing the disease haplotypes in Finnish MKS families linked to the MKS1 locus on chromosome 17q23 (MKS1) locus. Subsequently, the genetic heterogeneity of MKS was established in the Finnish families. Mutations in at least four different genes can cause MKS. These genes have been mapped to the chromosomes 17q23 (MKS1), 11q13 (MKS2), 8q22 (MKS3) and 9q33 (MKS4). Two of these genes have been identified so far: The MKS1 gene (this work) and the MKS3 gene. The identified MKS1 gene was initially a novel human gene which is conserved among species. We found three different MKS mutations, one of them being the Finnish founder mutation. The information available from MKS1 orthologs in other species convinced us that the MKS1 gene is required for normal ciliogenesis. Defects of the cilial system in other human diseases and model organisms actually cause phenotypic features similar to those seen in MKS patients. The MKS3 (TMEM67) gene encodes a transmembrane protein and the gene maps to the syntenic Wpk locus in the rat, which is a model with polycystic kidney disease, agenesis of the corpus callosum and hydrocephalus. The available information from these two genes suggest that MKS1 would encode a structural component of the centriole required for normal ciliary functions, and MKS3 would be a transmembrane component most likely required for normal ciliary sensory signaling. The MKS4 locus was localized to chromosme 9q32-33 in this study by using an inbred Finnish family with two affected and two healthy children. This fourth locus contains TRIM32 gene, which is associated to another well characterized human ciliopathy, Bardet Biedl syndrome (BBS). Future studies should identify the MKS4 gene on chromosome 9q and confirm if there are more than two genes causing MKS Finnish families. The research on critical signaling pathways in organogenesis have shown that both Wnt and Hedgehog pathways are dependent on functional cilia. The MKS gene products will serve as excellent model molecules for more detailed studies of the functional role of cilia in organogenesis in more detail.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The continuous production of blood cells, a process termed hematopoiesis, is sustained throughout the lifetime of an individual by a relatively small population of cells known as hematopoietic stem cells (HSCs). HSCs are unique cells characterized by their ability to self-renew and give rise to all types of mature blood cells. Given their high proliferative potential, HSCs need to be tightly regulated on the cellular and molecular levels or could otherwise turn malignant. On the other hand, the tight regulatory control of HSC function also translates into difficulties in culturing and expanding HSCs in vitro. In fact, it is currently not possible to maintain or expand HSCs ex vivo without rapid loss of self-renewal. Increased knowledge of the unique features of important HSC niches and of key transcriptional regulatory programs that govern HSC behavior is thus needed. Additional insight in the mechanisms of stem cell formation could enable us to recapitulate the processes of HSC formation and self-renewal/expansion ex vivo with the ultimate goal of creating an unlimited supply of HSCs from e.g. human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPS) to be used in therapy. We thus asked: How are hematopoietic stem cells formed and in what cellular niches does this happen (Papers I, II)? What are the molecular mechanisms that govern hematopoietic stem cell development and differentiation (Papers III, IV)? Importantly, we could show that placenta is a major fetal hematopoietic niche that harbors a large number of HSCs during midgestation (Paper I)(Gekas et al., 2005). In order to address whether the HSCs found in placenta were formed there we utilized the Runx1-LacZ knock-in and Ncx1 knockout mouse models (Paper II). Importantly, we could show that HSCs emerge de novo in the placental vasculature in the absence of circulation (Rhodes et al., 2008). Furthermore, we could identify defined microenvironmental niches within the placenta with distinct roles in hematopoiesis: the large vessels of the chorioallantoic mesenchyme serve as sites of HSC generation whereas the placental labyrinth is a niche supporting HSC expansion (Rhodes et al., 2008). Overall, these studies illustrate the importance of distinct milieus in the emergence and subsequent maturation of HSCs. To ensure proper function of HSCs several regulatory mechanisms are in place. The microenvironment in which HSCs reside provides soluble factors and cell-cell interactions. In the cell-nucleus, these cell-extrinsic cues are interpreted in the context of cell-intrinsic developmental programs which are governed by transcription factors. An essential transcription factor for initiation of hematopoiesis is Scl/Tal1 (stem cell leukemia gene/T-cell acute leukemia gene 1). Loss of Scl results in early embryonic death and total lack of all blood cells, yet deactivation of Scl in the adult does not affect HSC function (Mikkola et al., 2003b. In order to define the temporal window of Scl requirement during fetal hematopoietic development, we deactivated Scl in all hematopoietic lineages shortly after hematopoietic specification in the embryo . Interestingly, maturation, expansion and function of fetal HSCs was unaffected, and, as in the adult, red blood cell and platelet differentiation was impaired (Paper III)(Schlaeger et al., 2005). These findings highlight that, once specified, the hematopoietic fate is stable even in the absence of Scl and is maintained through mechanisms that are distinct from those required for the initial fate choice. As the critical downstream targets of Scl remain unknown, we sought to identify and characterize target genes of Scl (Paper IV). We could identify transcription factor Mef2C (myocyte enhancer factor 2 C) as a novel direct target gene of Scl specifically in the megakaryocyte lineage which largely explains the megakaryocyte defect observed in Scl deficient mice. In addition, we observed an Scl-independent requirement of Mef2C in the B-cell compartment, as loss of Mef2C leads to accelerated B-cell aging (Gekas et al. Submitted). Taken together, these studies identify key extracellular microenvironments and intracellular transcriptional regulators that dictate different stages of HSC development, from emergence to lineage choice to aging.