16 resultados para Left Ventricular Elastance

em Helda - Digital Repository of University of Helsinki


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electric activity of the heart consists of repeated cardiomyocyte depolarizations and repolarizations. Abnormalities in repolarization predispose to ventricular arrhythmias. In body surface electrocardiogram, ventricular repolarization generates the T wave. Several electrocardiographic measures have been developed both for clinical and research purposes to detect repolarization abnormalities. The study aim was to investigate modifiers of ventricular repolarization with the focus on the relationship of the left ventricular mass, antihypertensive drugs, and common gene variants, to electrocardiographic repolarization parameters. The prognostic value of repolarization parameters was also assessed. The study subjects originated from a population of more than 200 middle-aged hypertensive men attending the GENRES hypertension study, and from an epidemiological survey, the Health 2000 Study, including more than 6000 participants. Ventricular repolarization was analysed from digital standard 12-lead resting electrocardiograms with two QT-interval based repolarization parameters (QT interval, T-wave peak to T-wave end interval) and with a set of four T-wave morphology parameters. The results showed that in hypertensive men, a linear change in repolarization parameters is present even in the normal range of left ventricular mass, and that even mild left ventricular hypertrophy is associated with potentially adverse electrocardiographic repolarization changes. In addition, treatments with losartan, bisoprolol, amlodipine, and hydrochlorothiazide have divergent short-term effects on repolarization parameters in hypertensive men. Analyses of the general population sample showed that single nucleotide polymorphisms in KCNH2, KCNE1, and NOS1AP genes are associated with changes in QT-interval based repolarization parameters but not consistently with T-wave morphology parameters. T-wave morphology parameters, but not QT interval or T-wave peak to T-wave end interval, provided independent prognostic information on mortality. The prognostic value was specifically related to cardiovascular mortality. The results indicate that, in hypertension, altered ventricular repolarization is already present in mild left ventricular mass increase, and that commonly used antihypertensive drugs may relatively rapidly and treatment-specifically modify electrocardiographic repolarization parameters. Common variants in cardiac ion channel genes and NOS1AP gene may also modify repolarization-related arrhythmia vulnerability. In the general population, T-wave morphology parameters may be useful in the risk assessment of cardiovascular mortality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Type 2 diabetes is a risk factor for the development of cardiovascular disease. Recently, the term diabetic cardiomyopathy has been proposed to describe the changes in the heart that occur in response to chronic hyperglycemia and insulin resistance. Ventricular remodelling in diabetic cardiomyopathy includes left ventricular hypertrophy, increased interstitial fibrosis, apoptosis and diastolic dysfunction. Mechanisms behind these changes are increased oxidative stress and renin-angiotensin system activation. The diabetic Goto-Kakizaki rat is a non-obese model of type 2 diabetes that exhibits defective insulin signalling. Recently two interconnected stress response pathways have been discovered that link insulin signalling, longevity, apoptosis and cardiomyocyte hypertrophy. The insulin-receptor PI3K/Ak pathway inhibits proapoptotic FOXO3a in response to insulin signalling and the nuclear Sirt1 deacetylase inhibits proapoptotic p53 and modulates FOXO3a in favour of survival and growth. --- Levosimendan is a calcium sensitizing agent used for the management of acute decompensated heart failure. Levosimendan acts as a positive inotrope by sensitizing cardiac troponin C to calcium and exerts vasodilation by opening mitochondrial and sarcolemmal ATP-sensitive potassium channels. Levosimendan has been described to have beneficial effects in ventricular remodelling after myocardial infarction. The aims of the study were to characterize whether diabetic cardiomyopathy associates with cardiac dysfunction, cardiomyocyte apoptosis, hypertrophy and fibrosis in spontaneously diabetic Goto-Kakizaki (GK) rats, which were used to model type 2 diabetes. Protein expression and activation of the Akt FOXO3a and Sirt1 p53 pathways were examined in the development of ventricular remodelling in GK rats with and without myocardial infarction (MI). The third and fourth studies examined the effects of levosimendan on ventricular remodelling and gene expression in post-MI GK rats. The results demonstrated that diabetic GK rats develop both modest hypertension and features similar to diabetic cardiomyopathy including cardiac dysfunction, LV hypertrophy and fibrosis and increased apoptotic signalling. MI induced a sustained increase in cardiomyocyte apoptosis in GK rats together with aggravated LV hypertrophy and fibrosis. The GK rat myocardium exhibited decreased Akt- FOXO3a phosphorylation and increased nuclear translocation of FOXO3a and overproduction of the Sirt1 protein. Treatment with levosimendan decreased cardiomyocyte apoptosis, senescence and LV hypertrophy and altered the gene expression profile in GK rat myocardium. The findings indicate that impaired cardioprotection via Akt FOXO3a and p38 MAPK is associated with increased apoptosis, whereas Sirt1 functions in counteracting apoptosis and the development of LV hypertrophy in the GK rat myocardium. Overall, levosimendan treatment protects against post-MI ventricular remodelling and alters the gene expression profile in the GK rat myocardium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hypertension, obesity, dyslipidemia and dysglycemia constitute metabolic syndrome, a major public health concern, which is associated with cardiovascular mortality. High dietary salt (NaCl) is the most important dietary risk factor for elevated blood pressure. The kidney has a major role in salt-sensitive hypertension and is vulnerable to harmful effects of increased blood pressure. Elevated serum urate is a common finding in these disorders. While dysregulation of urate excretion is associated with cardiovascular diseases, present studies aimed to clarify the role of xanthine oxidoreductase (XOR), i.e. xanthine dehydrogenase (XDH) and its post-translational isoform xanthine oxidase (XO), in cardiovascular diseases. XOR yields urate from hypoxanthine and xanthine. Low oxygen levels upregulate XOR in addition to other factors. In present studies higher renal XOR activity was found in hypertension-prone rats than in the controls. Furthermore, NaCl intake increased renal XOR dose-dependently. To clarify whether XOR has any causal role in hypertension, rats were kept on NaCl diets for different periods of time, with or without a XOR inhibitor, allopurinol. While allopurinol did not alleviate hypertension, it prevented left ventricular and renal hypertrophy. Nitric oxide synthases (NOS) produce nitric oxide (NO), which mediates vasodilatation. A paucity of NO, produced by NOS inhibition, aggravated hypertension and induced renal XOR, whereas NO generating drug, alleviated salt-induced hypertension without changes in renal XOR. Zucker fa/fa rat is an animal model of metabolic syndrome. These rats developed substantial obesity and modest hypertension and showed increased hepatic and renal XOR activities. XOR was modified by diet and antihypertensive treatment. Cyclosporine (CsA) is a fungal peptide and one of the first-line immunosuppressive drugs used in the management of organ transplantation. Nephrotoxicity ensue high doses resulting in hypertension and limit CsA use. CsA increased renal XO substantially in salt-sensitive rats on a high NaCl diet, indicating a possible role for this reactive oxygen species generating isoform in CsA nephrotoxicity. Renal hypoxia, common to these rodent models of hypertension and obesity, is one of the plausible XOR inducing factors. Although XOR inhibition did not prevent hypertension, present experimental data indicate that XOR plays a role in the pathology of salt-induced cardiac and renal hypertrophy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyclosporine-A (CsA) is widely used after organ transplantation to prevent rejection and in the treatment of autoimmune diseases. Hypertension and nephrotoxicity are common side-effects of CsA. Studies in patients on the prevention of the side-effects of CsA are difficult to conduct because the patients often receive a combination of different drugs thus making study of the side-effects of a single drug impossible. A challenge in experimental studies has been the lack of an animal model in which the side-effects concomitantly occur. Epidemiological data show an association between sodium (Na) intake and blood pressure. There is also evidence on low dietary intake of magnesium (Mg) and potassium (K) and high blood pressure. Our study was designed to develop an experimental model to study the side-effects of CsA in spontaneously hypertensive rats (SHR). On high dietary sodium, CsA caused hypertension, left ventricular hypertrophy (LVH), narrowing of the coronary arteries, small myocardial infarctions, and proteinuria, reduced creatinine clearance and histopathological renal injury in SHR. Loss of Mg into the urine caused by CsA resulted in Mg depletion in the tissues. Renal excretion of dopamine was reduced and the renin-angiotensin-aldosterone system was activated. We investigated the effects of dietary Mg and/or K and the calcium antagonist drug, isradipine, on the prevention of CsA toxicity. Dietary supplementation of Mg alone or in combination with K prevented from the deleterious pathophysiological and histopathological changes in the kidneys and the heart. K alone had little effect. Isradipine protected better than Mg from LVH, but the combination of isradipine and Mg was the most effective. Isradipine did not, however, protect against Mg loss. In our animal model, the combination of high dietary Na and treatment with CsA accelerated the development of the cardiovascular and renal changes clinically known as the side-effects of CsA. Dietary supplementation of Mg and K and reduction of Na intake and the calcium antagonist drug isradipine prevent from the deleterious effects of CsA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accumulating evidence show that kinins, notably bradykinin (BK) and kallidin, have cardioprotective effects. To these include reduction of left ventricular hypertrophy (LVH) and progression of heart failure. The effects are mediated through two G protein-coupled receptors- bradykinin type-2 receptor (BK-2R) and bradykinin type -1 receptor (BK-1R). The widely accepted cardioprotective effects of BK-receptors relate to triggering the production and release of vasodilating nitric oxide (NO) by endothelial cells. They also exert anti-proliferative effects on fibroblasts and anti-hypertrophic effects on myocytes, and thus may play an essential role in the cardioprotective response to myocardial injury. The role for BK-1Rs in HF is based on experimental animal models, where the receptors have been linked to cardioprotective- but also to cardiotoxic -effects. The BK-1Rs are induced under inflammatory and ischemic conditions, shown in animal models; no previous reports, concerning BK-1Rs in human heart failure, have been presented. The expression of BK-2Rs is down-regulated in human end-stage heart failure. Present results showed that, in these patients, the BK-1Rs were up-regulated, suggesting that also BK-1Rs are involved in the pathogenesis of human heart failure. The receptors were localized mainly in the endothelium of intramyocardial coronary vessels, and correlated with the increased TNF-α expression in the myocardial coronary vessels. Moreover, in cultured endothelial cells, TNF-α was a potent trigger of BK-1Rs. These results suggest that cytokines may be responsible for the up-regulation of BK-1Rs in human heart failure. A linear relationship between BK-2R mRNA and protein expression in normal and failing human left ventricles implies that the BK-2Rs are regulated on the transcriptional level, at least in human myocardium. The expression of BK-2Rs correlated positively with age in normal and dilated hearts (IDC). The results suggest that human hearts adapts to age-related changes, by up-regulating the expression of cardioprotective BK-2Rs. Also, in the BK-2R promoter polymorphism -58 T/C, the C-allele was accumulated in cardiomyopathy patients which may partially explain the reduced number of BK-2Rs. Statins reduce the level of plasma cholesterol, but also exert several non-cholesterol-dependent effects. These effects were studied in human coronary arterial endothelial cells (hCAEC) and incubation with lovastatin induced both BK-1 and BK-2Rs in a time and concentration-dependent way. The induced BK-2Rs were functionally active, thus NO production and cGMP signaling was increased. Induction was abrogated by mevalonate, a direct HMG-CoA metabolite. Lovastatin is known to inhibit Rho activation, and by a selective RhoA kinase inhibitor (Y27632), a similar induction of BK-2R expression as with lovastatin. Interestingly a COX-2-inhibitor (NS398) inhibited this lovastatin-induction of BK-2Rs, suggesting that COX-2 inhibitors may affect the endothelial BK-2Rs, in a negative fashion. Hypoxia is a common denominator in HF but also in other cardiovascular diseases. An induction of BK-2Rs in mild hypoxic conditions was shown in cultured hCAECs, which was abolished by a specific BK-2R inhibitor Icatibant. These receptors were functionally active, thus BK increased and Icatibant inhibited the production of NO. In rat myocardium the expression of BK-2R was increased in the endothelium of vessels, forming at the border zone, between the scar tissue and the healthy myocardium. Moreover, in in vitro wound-healing assay, endothelial cells were cultured under hypoxic conditions and BK significantly increased the migration of these cells and as Icatibant inhibited it. These results show, that mild hypoxia triggers a temporal expression of functionally active BK-2Rs in human and rat endothelial cells, supporting a role for BK-2Rs, in hypoxia induced angiogenesis. Our and previous results show, that BK-Rs have an impact on the cardiovascular diseases. In humans, at the end stage of heart failure, the BK-2Rs are down-regulated and BK-1Rs induced. Whether the up-regulation of BK-1Rs, is a compensatory mechanism against the down-regulation of BK-2Rs, or merely reflects the end point of heart failure, remains to bee seen. In a clinical point of view, the up-regulation of BK-2Rs, under hypoxic conditions or statin treatment, suggests that, the induction of BK-2Rs is protective in cardiovascular pathologies and those treatments activating BK-2Rs, might give additional tools in treating heart failure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atrial fibrillation is the most common arrhythmia requiring treatment. This Thesis investigated atrial fibrillation (AF) with a specific emphasis on atrial remodeling which was analysed from epidemiological, clinical and magnetocardiographic (MCG) perspectives. In the first study we evaluated in real-life clinical practice a population-based cohort of AF patients referred for their first elective cardioversion (CV). 183 consecutive patients were included of whom in 153 (84%) sinus rhythm (SR) was restored. Only 39 (25%) of those maintained SR for one year. Shorter duration of AF and the use of sotalol were the only characteristics associated with better restoration and maintenance of SR. During the one-year follow-up 40% of the patients ended up in permanent AF. Female gender and older age were associated with the acceptance of permanent AF. The LIFE-trial was a prospective, randomised, double-blinded study that evaluated losartan and atenolol in patients with hypertension and left ventricular hypertrophy (LVH). Of the 8,851 patients with SR at baseline and without a history of AF 371 patients developed new-onset AF during the study. Patients with new-onset AF had an increased risk of cardiac events, stroke, and increased rate of hospitalisation for heart failure. Younger age, female gender, lower systolic blood pressure, lesser LVH in ECG and randomisation to losartan therapy were independently associated with lower frequency of new-onset AF. The impact of AF on morbidity and mortality was evaluated in a post-hoc analysis of the OPTIMAAL trial that compared losartan with captopril in patients with acute myocardial infarction (AMI) and evidence of LV dysfunction. Of the 5,477 randomised patients 655 had AF at baseline, and 345 patients developed new AF during the follow-up period, median 3.0 years. Older patients and patients with signs of more serious heart disease had and developed AF more often. Patients with AF at baseline had an increased risk of mortality (hazard ratio (HR) of 1.32) and stroke (HR 1.77). New-onset AF was associated with increased mortality (HR 1.82) and stroke (HR of 2.29). In the fourth study we assessed the reproducibility of our MCG method. This method was used in the fifth study where 26 patients with persistent AF had immediately after the CV longer P-wave duration and higher energy of the last portion of atrial signal (RMS40) in MCG, increased P-wave dispersion in SAECG and decreased pump function of the atria as well as enlarged atrial diameter in echocardiography compared to age- and disease-matched controls. After one month in SR, P-wave duration in MCG still remained longer and left atrial (LA) diameter greater compared to the controls, while the other measurements had returned to the same level as in the control group. In conclusion is not a rare condition in either general population or patients with hypertension or AMI, and it is associated with increased risk of morbidity and mortality. Therefore, atrial remodeling that increases the likelihood of AF and also seems to be relatively stable has to be identified and prevented. MCG was found to be an encouraging new method to study electrical atrial remodeling and reverse remodeling. RAAS-suppressing medications appear to be the most promising method to prevent atrial remodeling and AF.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cardiac surgery involving cardiopulmonary bypass (CPB) induces activation of inflammation and coagulation systems and is associated with ischemia-reperfusion injury (I/R injury)in various organs including the myocardium, lungs, and intestine. I/R injury is manifested as organ dysfunction. Thrombin, the key enzyme of coagulation , plays a cenral role also in inflammation and contributes to regulation of apoptosis as well. The general aim of this thesis was to evaluate the potential of thrombin inhibition in reducing the adverse effects of I/R injury in myocardium, lungs, and intestine associated with the use of CPB and cardiac surgery. Forty five pigs were used for the studies. Two randomized blinded studies were performed. Animals underwent 75 min of normothermic CPB, 60 min of aortic clamping, and 120 min of reperfusion period. Twenty animals received iv. recombinant hirudin, a selective and effective inbitor of thrombin, or placebo. In a similar setting, twenty animals received an iv-bolus (250 IU/kg) of antithrombin (AT) or placebo. An additional group of 5 animals received 500 IU/kg in an open label setting to test dose response. Generation of thrombin (TAT), coagulation status (ACT), and hemodynamics were measured. Intramucosal pH and pCO2 were measured from the luminal surface of ileum using tonometry simultaneusly with arterial gas analysis. In addition, myocardial, lung, and intestinal biopsies were taken to quantitate leukocyte infiltration (MPO), for histological evaluation, and detection of apoptosis (TUNEL, caspase 3). In conclusion, our data suggest that r-hirudin may be an effective inhibitor of reperfusion induced thrombin generation in addition to being a direct inhibitor of preformed thrombin. Overall, the results suggest that inhibition of thrombin, beyond what is needed for efficient anticoagulation by heparin, has beneficial effects on myocardial I/R injury and hemodynamics during cardiac surgery and CPB. We showed that infusion of the thrombin inhibitor r-hirudin during reperfusion was associated with attenuated post ischemia left ventricular dysfunction and decreased systemic vascular resistance. Consequently microvascular flow was improved during ischemia-reperfusion injury. Improved recovery of myocardium during the post-ischemic reperfusion period was associated with significantly less cardiomyocyte apoptosis and with a trend in anti-inflammatory effects. Thus, inhibition of reperfusion induced thrombin may offer beneficial effects by mechanisms other than direct anticoagulant effects. AT, in doses with a significant anticoagulant effect, did not alleviate myocardial I/R injury in terms of myocardial recovery, histological inflammatory changes or post-ischemic troponin T release. Instead, AT attenuated reperfusion induced increase in pulmonary pressure after CPB. Taken the clinical significance of postoperative pulmonary hemodynamics in patients undergoing cardiopulmonary bypass, the potential positive regulatory role of AT and clinical implications needs to be studied further. Inflammatory response in the gut wall proved to be poorly associated with perturbed mucosal perfusion and the animals with the least neutrophil tissue sequestration and I/R related histological alterations tended to have the most progressive mucosal hypoperfusion. Thus, mechanisms of low-flow reperfusion injury during CPB can differ from the mechanisms seen in total ischemia reperfusion injury.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The project consisted of two long-term follow-up studies of preterm children addressing the question whether intrauterine growth restriction affects the outcome. Assessment at 5 years of age of 203 children with a birth weight less than 1000 g born in Finland in 1996-1997 showed that 9% of the children had cognitive impairment, 14% cerebral palsy, and 4% needed a hearing aid. The intelligence quotient was lower (p<0.05) than the reference value. Thus, 20% exhibited major, 19% minor disabilities, and 61% had no functional abnormalities. Being small for gestational age (SGA) was associated with sub-optimal growth later. In children born before 27 gestational weeks, the SGA had more neuropsychological disabilities than those appropriate for gestational age (AGA). In another cohort with birth weight less than 1500 g assessed at 5 years of age, echocardiography showed a thickened interventricular septum and a decreased left ventricular end-diastolic diameter in both SGA and AGA born children. They also had a higher systolic blood pressure than the reference. Laser-Doppler flowmetry showed different endothelium-dependent and -independent vasodilation responses in the AGA children compared to those of the controls. SGA was not associated with cardio-vascular abnormalities. Auditory event-related potentials (AERPs) were recorded using an oddball paradigm with frequency deviants (standard tone 500 Hz and deviant 750-Hz with 10% probability). At term, the P350 was smaller in SGA and AGA infants than in controls. At 12 months, the automatic change detection peak (mismatch negativity, MMN) was observed in the controls. However, the pre-term infants had a difference positivity that correlated with their neurodevelopment scores. At 5 years of age, the P1-deflection, which reflects primary auditory processing, was smaller, and the MMN larger in the preterm than in the control children. Even with a challenging paradigm or a distraction paradigm, P1 was smaller in the preterm than in the control children. The SGA and AGA children showed similar AERP responses. Prematurity is a major risk factor for abnormal brain development. Preterm children showed signs of cardiovascular abnormality suggesting that prematurity per se may carry a risk for later morbidity. The small positive amplitudes in AERPs suggest persisting altered auditory processing in the preterm in-fants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the studies was to improve the diagnostic capability of electrocardiography (ECG) in detecting myocardial ischemic injury with a future goal of an automatic screening and monitoring method for ischemic heart disease. The method of choice was body surface potential mapping (BSPM), containing numerous leads, with intention to find the optimal recording sites and optimal ECG variables for ischemia and myocardial infarction (MI) diagnostics. The studies included 144 patients with prior MI, 79 patients with evolving ischemia, 42 patients with left ventricular hypertrophy (LVH), and 84 healthy controls. Study I examined the depolarization wave in prior MI with respect to MI location. Studies II-V examined the depolarization and repolarization waves in prior MI detection with respect to the Minnesota code, Q-wave status, and study V also with respect to MI location. In study VI the depolarization and repolarization variables were examined in 79 patients in the face of evolving myocardial ischemia and ischemic injury. When analyzed from a single lead at any recording site the results revealed superiority of the repolarization variables over the depolarization variables and over the conventional 12-lead ECG methods, both in the detection of prior MI and evolving ischemic injury. The QT integral, covering both depolarization and repolarization, appeared indifferent to the Q-wave status, the time elapsed from MI, or the MI or ischemia location. In the face of evolving ischemic injury the performance of the QT integral was not hampered even by underlying LVH. The examined depolarization and repolarization variables were effective when recorded in a single site, in contrast to the conventional 12-lead ECG criteria. The inverse spatial correlation of the depolarization and depolarization waves in myocardial ischemia and injury could be reduced into the QT integral variable recorded in a single site on the left flank. In conclusion, the QT integral variable, detectable in a single lead, with optimal recording site on the left flank, was able to detect prior MI and evolving ischemic injury more effectively than the conventional ECG markers. The QT integral, in a single-lead or a small number of leads, offers potential for automated screening of ischemic heart disease, acute ischemia monitoring and therapeutic decision-guiding as well as risk stratification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conventional invasive coronary angiography is the clinical gold standard for detecting of coronary artery stenoses. Noninvasive multidetector computed tomography (MDCT) in combination with retrospective ECG gating has recently been shown to permit visualization of the coronary artery lumen and detection of coronary artery stenoses. Single photon emission tomography (SPECT) perfusion imaging has been considered the reference method for evaluation of nonviable myocardium, but magnetic resonance imaging (MRI) can accurately depict structure, function, effusion, and myocardial viability, with an overall capacity unmatched by any other single imaging modality. Magnetocardiography (MCG) provides noninvasively information about myocardial excitation propagation and repolarization without the use of electrodes. This evolving technique may be considered the magnetic equivalent to electrocardiography. The aim of the present series of studies was to evaluate changes in the myocardium assessed with SPECT and MRI caused by coronary artery disease, examine the capability of multidetector computed tomography coronary angiography (MDCT-CA) to detect significant stenoses in the coronary arteries, and MCG to assess remote myocardial infarctions. Our study showed that in severe, progressing coronary artery disease laser treatment does not improve global left ventricular function or myocardial perfusion, but it does preserve systolic wall thickening in fixed defects (scar). It also prevents changes from ischemic myocardial regions to scar. The MCG repolarization variables are informative in remote myocardial infarction, and may perform as well as the conventional QRS criteria in detection of healed myocardial infarction. These STT abnormalities are more pronounced in patients with Q-wave infarction than in patients with non-Q-wave infarctions. MDCT-CA had a sensitivity of 82%, a specificity of 94%, a positive predictive value of 79%, and a negative predictive value of 95% for stenoses over 50% in the main coronary arteries as compared with conventional coronary angiography in patients with known coronary artery disease. Left ventricular wall dysfunction, perfusion defects, and infarctions were detected in 50-78% of sectors assigned to calcifications or stenoses, but also in sectors supplied by normally perfused coronary arteries. Our study showed a low sensitivity (sensitivity 63%) in detecting obstructive coronary artery disease assessed by MDCT in patients with severe aortic stenosis. Massive calcifications complicated correct assessment of the lumen of coronary arteries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Myocardial infarction (MI) and heart failure are major causes of morbidity and mortality worldwide. Treatment of MI involves early restoration of blood flow to limit infarct size and preserve cardiac function. MI leads to left ventricular remodeling, which may eventually progress to heart failure, despite the established pharmacological treatment of the disease. To improve outcome of MI, new strategies for protecting the myocardium against ischemic injury and enhancing the recovery and repair of the infarcted heart are needed. Heme oxygenase-1 (HO-1) is a stress-responsive and cytoprotective enzyme catalyzing the degradation of heme into the biologically active reaction products biliverdin/bilirubin, carbon monoxide (CO) and free iron. HO-1 plays a key role in maintaining cellular homeostasis by its antiapoptotic, anti-inflammatory, antioxidative and proangiogenic properties. The present study aimed, first, at evaluating the role of HO-1 as a cardioprotective and prohealing enzyme in experimental rat models and at investigating the potential mechanisms mediating the beneficial effects of HO-1 in the heart. The second aim was to evaluate the role of HO-1 in 231 critically ill intensive care unit (ICU) patients by investigating the association of HO-1 polymorphisms and HO-1 plasma concentrations with illness severity, organ dysfunction and mortality throughout the study population and in the subgroup of cardiac patients. We observed in an experimental rat MI model, that HO-1 expression was induced in the infarcted rat hearts, especially in the infarct and infarct border areas. In addition, pre-emptive HO-1 induction and CO donor pretreatment promoted recovery and repair of the infarcted hearts by differential mechanisms. CO promoted vasculogenesis and formation of new cardiomyocytes by activating c-kit+ stem/progenitor cells via hypoxia-inducible factor 1 alpha, stromal cell-derived factor 1 alpha (SDF-1a) and vascular endothelial growth factor B, whereas HO-1 promoted angiogenesis possibly via SDF-1a. Furthermore, HO-1 protected the heart in the early phase of infarct healing by increasing survival and proliferation of cardiomyocytes. The antiapoptotic effect of HO-1 persisted in the late phases of infarct healing. HO-1 also modulated the production of extracellular matrix components and reduced perivascular fibrosis. Some of these beneficial effects of HO-1 were mediated by CO, e.g. the antiapoptotic effect. However, CO may also have adverse effects on the heart, since it increased the expression of extracellular matrix components. In isolated perfused rat hearts, HO-1 induction improved the recovery of postischemic cardiac function and abrogated reperfusion-induced ventricular fibrillation, possibly in part via connexin 43. We found that HO-1 plasma levels were increased in all critically ill patients, including cardiac patients, and were associated with the degree of organ dysfunction and disease severity. HO-1 plasma concentrations were also higher in ICU and hospital nonsurvivors than in survivors, and the maximum HO-1 concentration was an independent predictor of hospital mortality. Patients with the HO-1 -413T/GT(L)/+99C haplotype had lower HO-1 plasma concentrations and lower incidence of multiple organ dysfunction. However, HO-1 polymorphisms were not associated with ICU or hospital mortality. The present study shows that HO-1 is induced in response to stress in both experimental animal models and severely ill patients. HO-1 played an important role in the recovery and repair of infarcted rat hearts. HO-1 induction and CO donor pretreatment enhanced cardiac regeneration after MI, and HO-1 may protect against pathological left ventricular remodeling. Furthermore, HO-1 induction potentially may protect against I/R injury and cardiac dysfunction in isolated rat hearts. In critically ill ICU patients, HO-1 plasma levels correlate with the degree of organ dysfunction, disease severity, and mortality, suggesting that HO-1 may be useful as a marker of disease severity and in the assessment of outcome of critically ill patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hypertension is a major risk factor for stroke, ischaemic heart disease, and the development of heart failure. Hypertension-induced heart failure is usually preceded by the development of left ventricular hypertrophy (LVH), which represents an adaptive and compensatory response to the increased cardiac workload. Biomechanical stress and neurohumoral activation are the most important triggers of pathologic hypertrophy and the transition of cardiac hypertrophy to heart failure. Non-clinical and clinical studies have also revealed derangements of energy metabolism in hypertensive heart failure. The goal of this study was to investigate in experimental models the molecular mechanisms and signalling pathways involved in hypertension-induced heart failure with special emphasis on local renin-angiotensin-aldosterone system (RAAS), cardiac metabolism, and calcium sensitizers, a novel class of inotropic agents used currently in the treatment of acute decompensated heart failure. Two different animal models of hypertensive heart failure were used in the present study, i.e. hypertensive and salt-sensitive Dahl/Rapp rats on a high salt diet (a salt-sensitive model of hypertensive heart failure) and double transgenic rats (dTGR) harboring human renin and human angiotensinogen genes (a transgenic model of hypertensive heart failure with increased local RAAS activity). The influence of angiotensin II (Ang II) on cardiac substrate utilization and cardiac metabolomic profile was investigated by using gas chromatography coupled to time-of-flight mass spectrometry to detect 247 intermediary metabolites. It was found that Ang II could alter cardiac metabolomics both in normotensive and hypertensive rats in an Ang II receptor type 1 (AT1)-dependent manner. A distinct substrate use from fatty acid oxidation towards glycolysis was found in dTGR. Altered cardiac substrate utilization in dTGR was associated with mitochondrial dysfunction. Cardiac expression of the redox-sensitive metabolic sensor sirtuin1 (SIRT1) was increased in dTGR. Resveratrol supplementation prevented cardiovascular mortality and ameliorated Ang II-induced cardiac remodeling in dTGR via blood pressure-dependent pathways and mechanisms linked to increased mitochondrial biogenesis. Resveratrol dose-dependently increased SIRT1 activity in vitro. Oral levosimendan treatment was also found to improve survival and systolic function in dTGR via blood pressure-independent mechanisms, and ameliorate Ang II-induced coronary and cardiomyocyte damage. Finally, using Dahl/Rapp rats it was demonstrated that oral levosimendan as well as the AT1 receptor antagonist valsartan improved survival and prevented cardiac remodeling. The beneficial effects of levosimendan were associated with improved diastolic function without significantly improved systolic changes. These positive effects were potentiated when the drug combination was administered. In conclusion, the present study points to an important role for local RAAS in the pathophysiology of hypertension-induced heart failure as well as its involvement as a regulator of cardiac substrate utilization and mitochondrial function. Our findings suggest a therapeutic role for natural polyphenol resveratrol and calcium sensitizer, levosimendan, and the novel drug combination of valsartan and levosimendan, in prevention of hypertension-induced heart failure. The present study also provides a better understanding of the pathophysiology of hypertension-induced heart failure, and may help identify potential targets for novel therapeutic interventions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although improved outcomes for children on peritoneal dialysis (PD) have been seen in recent years, the youngest patients continue to demonstrate inferior growth, more frequent infections, more neurological sequelae, and higher mortality compared to older children. Also, maintain-ing normal intravascular volume status, especially in anuric patients, has proven difficult. This study was designed to treat and monitor these youngest PD patients, which are relatively many due to the high prevalence of congenital nephrotic syndrome of the Finnish type (CNF, NPHS1) in Finland, with a strict protocol, to evaluate the results and to improve metabolic balance, growth, and development. A retrospective analysis of 23 children under two years of age at onset of PD, treated between 1995 and 2000, was performed to obtain a control population for our prospective PD study. Respectively, 21 patients less than two years of age at the beginning of PD were enrolled in prospective studies between 2001 and 2005. Medication for uremia and nutrition were care-fully adjusted during PD. Laboratory parameters and intravascular volume status were regu-larly analyzed. Growth was analyzed and compared with midparental height. In a prospective neurological study, the risk factors for development and the neurological development was determined. Brain images were surveyed. Hearing was tested. In a retrospective neurological study, the data of six NPHS1 patients with a congruent neurological syndrome was analyzed. All these patients had a serious dyskinetic cerebral palsy-like syndrome with muscular dysto-nia and athetosis (MDA). They also had a hearing defect. Metabolic control was mainly good in both PD patient groups. Hospitalization time shortened clearly. The peritonitis rate diminished. Hypertension was a common problem. Left ventricular hypertrophy decreased during the prospective study period. None of the patients in either PD group had pulmonary edema or dialysis-related seizures. Growth was good and catch-up growth was documented in most patients in both patient groups during PD. Mortality was low (5% in prospective and 9% in retrospective PD patients). In the prospective PD patient group 11 patients (52%) had some risk factor for their neuro-development originating from the predialysis period. The neurological problems, detected be-fore PD, did not worsen during PD and none of the patients developed new neurological com-plications during PD. Brain infarcts were detected in four (19%) and other ischemic lesions in three patients (14%). At the end of this study, 29% of the prospectively followed patients had a major impairment of their neurodevelopment and 43% only minor impairment. In the NPHS1+MDA patients, no clear explanation for the neurological syndrome was found. The brain MRI showed increased signal intensity in the globus pallidus area. Kernic-terus was contemplated to be causative in the hypoproteinemic newborns but it could not be proven. Mortality was as high as 67%. Our results for young PD patients were promising. Metabolic control was acceptable and growth was good. However, the children were significantly smaller when compared to their midparental height. Although many patients were found to have neurological impairment at the end of our follow-up period, PD was a safe treatment whereby the neurodevelopment did not worsen during PD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heart failure is a common, severe, and progressive condition associated with high mortality and morbidity. Because of population-aging in the coming decades, heart failure is estimated to reach epidemic proportions. Current medical and surgical treatments have reduced mortality, but the prognosis for patients has remained poor. Transplantation of skeletal myoblasts has raised hope of regenerating the failing heart and compensating for lost cardiac contractile tissue. In the present work, we studied epicardial transplantation of tissue-engineered myoblast sheets for treatment of heart failure. We employed a rat model of myocardial infarction-induced acute and chronic heart failure by left anterior descending coronary artery ligation. We then transplanted myoblast sheets genetically modified to resist cell death after transplantation by expressing antiapoptotic gene bcl2. In addition, we evaluated the regenerative capacity of myoblast sheets expressing the cardioprotective cytokine hepatocyte growth factor in a rat chronic heart failure model. Furthermore, we utilized in vitro cardiomyocyte and endothelial cell culture models as well as microarray gene expression analysis to elucidate molecular mechanisms mediating the therapeutic effects of myoblast sheet transplantation. Our results demonstrate that Bcl2-expression prolonged myoblast sheet survival in rat hearts after transplantation and induced secretion of cardioprotective, proangiogenic cytokines. After acute myocardial infarction, these sheets attenuated left ventricular dysfunction and myocardial damage, and they induced therapeutic angiogenesis. In the chronic heart failure model, inhibition of graft apoptosis by Bcl-2 improved cardiac function, supported survival of cardiomyocytes in the infarcted area, and induced angiogenesis in a vascular endothelial growth factor receptor 1- and 2-dependent mechanism. Hepatocyte growth factor-secreting myoblast sheets further enhanced the angiogenic efficacy of myoblast sheet therapy. Moreover, myoblast-secreted paracrine factors protected cardiomyocytes against oxidative stress in an epidermal growth factor receptor- and c-Met dependent manner. This protection was associated with induction of antioxidative genes and activation of the unfolded protein response. Our results provide evidence that inhibiting myoblast sheet apoptosis can enhance the sheets efficacy for treating heart failure after acute and chronic myocardial infarction. Furthermore, we show that myoblast sheets can serve as vehicles for delivery of growth factors, and induce therapeutic angiogenesis in the chronically ischemic heart. Finally, myoblasts induce, in a paracine manner, a cardiomyocyte-protective response against oxidative stress. Our study elucidates novel mechanisms of myoblast transplantation therapy, and suggests effective means to improve this therapy for the benefit of the heart failure patient.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sydämen krooninen vajaatoiminta on merkittävä maailmanlaajuinen ongelma. Se on erilaisten sydän- ja verisuonisairauksien aiheuttama monimuotoinen oireyhtymä. Sydämen vasemman kammion hypertrofia eli sydämen seinämien paksuuntuminen on yksi keskeinen tekijä, joka voi olla sydämen vajaatoiminnan taustalla. Kohonnut verenpaine on yleisin syy, joka johtaa sydänlihaksen paksuuntumiseen. Tämä johtaa sydämen pumppaustoiminnan häiriintymiseen, erilaisten neurohormonaalisten mekanismien aktivaatioon ja edelleen sydämen vajaatoimintaan. Sydämen vajaatoiminnan neurohormonaalisista mekanismeista tärkeimmät ovat reniini-angiotensiini-aldosteroni-järjestelmän ja sympaattisen hermoston aktivaatio, sydämen rakenteiden uudelleenmuovautuminen, sydänlihassolujen apoptoosi ja systeeminen tulehdustila. Sydämen hypertrofiaa ja sen syntymistä pyritään estämään kohonneen verenpaineen lääkehoidolla. Reniini-angiotensiini-aldosteronijärjestelmällä on keskeinen merkitys sydämen vajaatoiminnassa. Sydämen vajaatoiminnan ennusteeseen vaikuttavista lääkeaineista angiotensiinikonvertasin estäjät (ACEestäjät) ovat säilyttäneet johtoasemansa jo vuosikymmenten ajan. Angiotensiinireseptoreiden salpaajien (AT1-salpaajien) odotettiin syrjäyttävän ACE-estäjät sydämen vajaatoiminnan hoidossa, mutta toistaiseksi niitä pidetään vain vaihtoehtoisina lääkkeinä. Sympaattisen hermoston aktivaatiota vähentävät β-salpaajat ovat vakiinnuttaneet asemansa toiseksi tärkeimpänä lääkeryhmänä. Diureetit ovat paljon käytetty lääkeaineryhmä sydämen vajaatoiminnan hoidossa, mutta niistä ainoastaan aldosteroniantagonisteilla on tutkitusti ennustetta parantavaa vaikutusta. Kroonisen vajaatoiminnan hoidossa käytetään edelleen myös digoksiinia. Tulevaisuudessa sydämen vajaatoiminnan ennusteeseen vaikuttavia lääkeaineita voivat olla reniinin estäjät, neutraaliendopeptidaasin estäjät, vasopressiinin antagonistit tai inflammatroisiin sytokiineihin vaikuttavat molekyylit. Erikoistyön kokeellisessa osiossa tarkoituksena oli tutkia sydämen hypertrofian kehittymistä vatsa-aortta kuristetuilla rotilla ja kalsiumherkistäjä levosimendaanin sekä AT1-salpaaja valsartaanin vaikutuksia hypertrofian kehittymiseen. Kokeellisessa osiossa arvioitiin myös sydämen hypertrofian ja vajaatoiminnan jyrsijämallina käytetyn vatsa-aortan kuristuksen (koarktaation) toimivuutta ja vaikutuksia ultraäänen avulla määritettyihin kardiovaskulaarisiin parametreihin. Vatsa-aortta kuristettiin munuaisvaltimoiden yläpuolelta. Kuristus saa aikaan verenpaineen kohoamisen ja sydämen työtaakan lisääntymisen. Pitkittyessään tila johtaa sydänlihaksen hypertrofiaan ja vajaatoimintaan. 64 eläintä jaettiin ryhmiin, siten että jokaiseen ryhmään tuli kahdeksan eläintä. Ryhmistä kolmelle annettiin lääkeaineena levosimendaania kolmella eri päiväannoksella (0,01 mg/kg; 0,10 mg/kg; 1,00 mg/kg) ja kolmelle valsartaania kolmella eri päiväannoksella (0,10 mg/kg; 1,00 mg/kg; 10,00 mg/kg) juomaveden mukana. Lääkitys aloitettiin leikkauksen jälkeen ja jatkettiin kahdeksan viikon ajan. Kardiovaskulaariset parametrit, kuten isovolumetrinen relaksaatioaika (IVRT), vasemman kammion läpimitta systolessa ja diastolessa sekä seinämäpaksuudet, ejektiofraktio (EF), supistuvuusosuus (FS), minuuttitilavuus (CO) ja iskutilavuus (SV) määritettiin kahdeksan viikon kuluttua leikkauksesta ultraäänitutkimuksen avulla. Lisäksi määritettiin eläinten sydämen paino suhteessa ruumiin painoon. Tuloksia verrattiin ilman lääkehoitoa olleeseen koarktaatioryhmään. Eläinmallin toimivuutta arvioitiin vertaamalla koarktaatioryhmän tuloksia sham-operoidun ryhmän tuloksiin. Levosimendaanilla havaittiin työssä sydämen systolista toimintaa parantava vaikutus. Tämä näkyi tendenssinä parantaa ejektiofraktioita ja vasemman kammion supistuvuusosuuksia. Sydämen diastoliseen toimintaan ei kummallakaan lääkeaineella ollut merkittävää vaikutusta. Diastolista toimintaa arvioitiin isovolumetrisen relaksaatioajan muutoksilla. Sydämen hypertrofian kehittymiseen ei kummallakaan lääkeaineella ollut merkittävää vaikutusta. Eläinmallin todettiin mallintavan hyvin sydämen hypetrofiaa ihmisellä, mutta ei niinkään sydämen vajaatoimintaa.