11 resultados para Host plant selection
em Helda - Digital Repository of University of Helsinki
Resumo:
Pectobacterium atrosepticum on Gram-negatiivinen bakteeri, joka aiheuttaa perunan tyvi- ja märkämätää. P. atrosepticum bakteerin optimilämpötila on melko alhainen ja se on yleinen lauhkeilla alueilla. Tyvimätä leviää pääasiassa siemenperunan välityksellä ja siksi se on ongelma erityisesti siemenperunan tuotannossa. P. atrosepticum kannan SCRI1043 genomi on julkaistu ja sitä tutkitaan malliorganismina märkä- ja tyvimädän taudinaiheuttamisen ymmärtämiseksi. Tämä opportunistinen taudinaiheuttaja voi elää isäntäkasvissa kuukausia piilevänä, aiheuttamatta näkyviä oireita. Suotuisissa olosuhteissa bakteerit alkavat jakautua ja tuottaa kasvin kudoksia hajottavia entsyymejä. Mädäntyvä kasvimassa tarjoaa ravinteita bakteerien kasvuun ja mahdollistaa isäntäkasvin asuttamisen. Soluseiniä hajottavien entsyymien merkitys taudinaiheuttamisessa on hyvin tunnettu, mutta oireettomasta jaksosta ja taudin alkuvaiheista tiedätään vain vähän. Bakteerin genomi sisältää monia toksiineja, adhesiineja, hemolysiineja ja muita proteiineja, joilla saattaa olla merkitys taudinaiheuttamisessa. Tässä työssä käytettiin proteomiikkaa ja mikrosiruanalysiä P. atrosepticum bakteerin erittyvien proteiinien ja geeniekspression tutkimiseen. Proteiinit, jotka eritetään ulos bakteerista, toimivat todennäköisesti taudinaiheuttamisessa, koska ne ovat suorassa kontaktissa isäntäkasvin kanssa. Analyysit suoritettiin olosuhteissa, jotka muistuttavat kasvin soluvälitilaa: matala pH, vähän ravinteita ja matala lämpötila. Isäntäkasvin läsnäolon vaikutusta proteiinien tuottoon ja geeniekspressioon tutkittiin lisäämällä perunauutetta kasvatusalustaan. Tutkimuksessa tunnistettiin P. atrosepticum bakteerin monia jo tunnettuja ja mahdollisesti taudinaiheuttamiseen liittyviä proteiineja. Perunauute lisäsi hiljattain tunnistetun, proteiinien eritysreittiä (tyyppi VI sekreetio, T6SS) koodaavien geenien ilmentymistä. Lisäksi bakteerin havaittiin erittävän useita T6SS:n liittyviä proteiineja kasvualustaan, johon oli lisätty perunauutetta. T6SS:n merkitys bakteereille on vielä epäselvä ja sen vaikutuksesta taudinaiheuttamiseen on julkaistu ristiriitaisia tuloksia. Märkä- ja tyvimädän ymmärtäminen molekulaarisella tasolla luo pohjan tautien kontrollointiin tähtäävään soveltavaan tutkimukseen. Tämä tutkimus lisää tietoa kasvi-patogeeni- interaktiosta ja sitä voidaan tulevaisuudessa käyttää hyväksi esimerkiksi diagnostiikassa, resistenttien perunalajikkeiden jalostuksessa tai viljely- ja varastointiolosuhteiden parantamisessa.
Resumo:
Spring barley is the most important crop in Finland based on cultivated land area. Net blotch, a disease caused by Pyrenophora teres Drech., is the most damaging disease of barley in Finland. The pressure to improve the economics and efficiency of agriculture has increased the need for more efficient plant protection methods. Development of durable host-plant resistance to net blotch is a promising possibility. However, deployment of disease resistant crops could initiate selection pressure on the pathogen (P. teres) population. The aim of this study was to understand the population biology of P. teres and to estimate the evolutionary potential of P. teres under selective pressure following deployment of resistance genes and application of fungicides. The study included mainly Finnish P. teres isolates. Population samples from Russia and Australia were also included. Using AFLP markers substantial genotypic variation in P. teres populations was identified. Differences among isolates were least within Finnish fields and significantly higher in Krasnodar, Russia. Genetic differentiation was identified among populations from northern Europe and from Australia, and between the two forms P. teres f. teres (PTT, net form of net blotch) and P. teres f. maculata (PTM, spot form of net blotch) in Australia. Differentiation among populations was also identified based on virulence between Finnish and Russian populations, and based on prochloraz (fungicide) tolerance in the Häme region in Finland. Surprisingly only PTT was recovered from Finland and Russia although both forms were earlier equally common in Finland. The reason for the shift in occurrence of forms in Finland remained uncertain. Both forms were found within several fields in Australia. Sexual reproduction of P. teres was supported by recover of both mating types in equal ratio in those areas although the prevalence of sexual mating seems to be less in Finland than in Australia. Population from Krasnodar was an exception since only one mating type was found in there. Based on the substantial high genotypic variation in Krasnodar it was suggested go represent an old P. teres population, whereas the Australian samples were suggested to represent newer populations. In conclusion, P. teres populations are differentiated at several levels. Human assistance in dispersal of P. teres on infected barley seed is obvious and decreases the differentiation among populations. This can increase the plant protection problems caused by this pathogen. P. teres is capable of sexual reproduction in several areas but the prevalence varies. Based on these findings it is apparent that P. teres has the potential to pose more serious problems in barley cultivation if plant protection is neglected. Therefore, good agricultural practices, including crop rotation and the use of healthy seed, are recommended.
Resumo:
Rhizoctonia spp. are ubiquitous soil inhabiting fungi that enter into pathogenic or symbiotic associations with plants. In general Rhizoctonia spp. are regarded as plant pathogenic fungi and many cause root rot and other plant diseases which results in considerable economic losses both in agriculture and forestry. Many Rhizoctonia strains enter into symbiotic mycorrhizal associations with orchids and some hypovirulent strains are promising biocontrol candidates in preventing host plant infection by pathogenic Rhizoctonia strains. This work focuses on uni- and binucleate Rhizoctonia (respectively UNR and BNR) strains belonging to the teleomorphic genus Ceratobasidium, but multinucleate Rhizoctonia (MNR) belonging to teleomorphic genus Thanatephorus and ectomycorrhizal fungal species, such as Suillus bovinus, were also included in DNA probe development work. Strain specific probes were developed to target rDNA ITS (internal transcribed spacer) sequences (ITS1, 5.8S and ITS2) and applied in Southern dot blot and liquid hybridization assays. Liquid hybridization was more sensitive and the size of the hybridized PCR products could be detected simultaneously, but the advantage in Southern hybridization was that sample DNA could be used without additional PCR amplification. The impacts of four Finnish BNR Ceratorhiza sp. strains 251, 266, 268 and 269 were investigated on Scot pine (Pinus sylvestris) seedling growth, and the infection biology and infection levels were microscopically examined following tryphan blue staining of infected roots. All BNR strains enhanced early seedling growth and affected the root architecture, while the infection levels remained low. The fungal infection was restricted to the outer cortical regions of long roots and typical monilioid cells detected with strain 268. The interactions of pathogenic UNR Ceratobasidium bicorne strain 1983-111/1N, and endophytic BNR Ceratorhiza sp. strain 268 were studied in single or dual inoculated Scots pine roots. The fungal infection levels and host defence-gene activity of nine transcripts [phenylalanine ammonia lyase (pal1), silbene synthase (STS), chalcone synthase (CHS), short-root specific peroxidase (Psyp1), antimicrobial peptide gene (Sp-AMP), rapidly elicited defence-related gene (PsACRE), germin-like protein (PsGER1), CuZn- superoxide dismutase (SOD), and dehydrin-like protein (dhy-like)] were measured from differentially treated and un-treated control roots by quantitative real time PCR (qRT-PCR). The infection level of pathogenic UNR was restricted in BNR- pre-inoculated Scots pine roots, while UNR was more competitive in simultaneous dual infection. The STS transcript was highly up-regulated in all treated roots, while CHS, pal1, and Psyp1 transcripts were more moderately activated. No significant activity of Sp-AMP, PsACRE, PsGER1, SOD, or dhy-like transcripts were detected compared to control roots. The integrated experiments presented, provide tools to assist in the future detection of these fungi in the environment and to understand the host infection biology and defence, and relationships between these interacting fungi in roots and soils. This study further confirms the complexity of the Rhizoctonia group both phylogenetically and in their infection biology and plant host specificity. The knowledge obtained could be applied in integrated forestry nursery management programmes.
Resumo:
Habitat fragmentation is currently affecting many species throughout the world. As a consequence, an increasing number of species are structured as metapopulations, i.e. as local populations connected by dispersal. While excellent studies of metapopulations have accumulated over the past 20 years, the focus has recently shifted from single species to studies of multiple species. This has created the concept of metacommunities, where local communities are connected by the dispersal of one or several of their member species. To understand this higher level of organisation, we need to address not only the properties of single species, but also establish the importance of interspecific interactions. However, studies of metacommunities are so far heavily biased towards laboratory-based systems, and empirical data from natural systems are urgently needed. My thesis focuses on a metacommunity of insect herbivores on the pedunculate oak Quercus robur a tree species known for its high diversity of host-specific insects. Taking advantage of the amenability of this system to both observational and experimental studies, I quantify and compare the importance of local and regional factors in structuring herbivore communities. Most importantly, I contrast the impact of direct and indirect competition, host plant genotype and local adaptation (i.e. local factors) to that of regional processes (as reflected by the spatial context of the local community). As a key approach, I use general theory to generate testable hypotheses, controlled experiments to establish causal relations, and observational data to validate the role played by the pinpointed processes in nature. As the central outcome of my thesis, I am able to relegate local forces to a secondary role in structuring oak-based insect communities. While controlled experiments show that direct competition does occur among both conspecifics and heterospecifics, that indirect interactions can be mediated by both the host plant and the parasitoids, and that host plant genotype may affect local adaptation, the size of these effects is much smaller than that of spatial context. Hence, I conclude that dispersal between habitat patches plays a prime role in structuring the insect community, and that the distribution and abundance of the target species can only be understood in a spatial framework. By extension, I suggest that the majority of herbivore communities are dependent on the spatial structure of their landscape and urge fellow ecologists working on other herbivore systems to either support or refute my generalization.
Resumo:
The bacterial genus Stenotrophomonas comprises 12 species. They are widely found throughout the environment and particularly S. maltophilia, S. rhizophila and S. pavanii are closely associated with plants. Strains of the most common Stenotrophomonas species, S. maltophilia, promote plant growth and health, degrade natural and man-made pollutants and produce biomolecules of biotechnological and economical value. Many S. maltophilia –strains are also multidrug resistant and can act as opportunistic human pathogens. During an INCO-project (1998-2002) rhizobia were collected from root nodules of the tropical leguminous tree Calliandra calothyrsus Meisn. from several countries in Central America, Africa and New Caledonia. The strains were identified by the N2-group (Helsinki university) and some strains turned out to be members of the genus Stenotrophomonas. Several Stenotrophomonas strains induced white tumor- or nodule-like structures on Calliandra?s roots in plant experiments. The strains could, besides from root nodules, also be isolated from surface sterilized roots and stems. The purpose of my work was to investigate if the Stenotrophomonas strains i) belong to a new Stenotrophomonas species, ii) have the same origin, iii) if there are other differences than colony morphology between phase variations of the same strain, iv) have plant growth-promoting (PGP) activity or other advantageous effects on plants, and v) like rhizobia have ability to induce root nodule formation. The genetic diversity and clustering of the Stenotrophomonas strains were analyzed with AFLP fingerprinting to get indications about their geographical origin. Differences in enzymatic properties and ability to use different carbon and energy sources were tested between the two phases of each strain with commercial API tests for bacterial identification. The ability to infect root hairs and induce root nodule formation was investigated both using plant tests with the host plant Calliandra and PCR amplification of nodA and nodC genes for nodulation. The PGP activity of the strains was tested in vitro mainly with plate methods. The impact on growth, nitrogen content and nodulation in vivo was investigated through greenhouse experiments with the legumes Phaseolus vulgaris and Galega orientalis. Both the genetic and phenotypic diversity among the Stenotrophomonas strains was small, which proposes that they have the same origin. The strains brought about changes on the root hairs of Calliandra and they also increased the amount of root hairs. However, no root nodules were detected. The strains produced IAA, protease and lipase in vitro. They also showed plant a growth-promoting effect on G. orientalis, both alone and together with R. galegae HAMBI 540, and also activated nodulation among efficient rhizobia on P. vulgaris in greenhouse. It requires further research to get a better picture about the mechanisms behind the positive effects. The results in this thesis, however, confirm earlier studies concerning Stenotrophomonas positive impact on plants.
Resumo:
Rhizoctonia solani is a soil inhabiting basidiomycetous fungus able to induce a wide range of symptoms in many plant species. This genetically complex species is divided to 13 anastomosis groups (AG), of which AG-3 is specialized to infect potato. However, also a few other AGs are able to infect or live in close contact with potato. On potato, R. solani infection causes two main types of diseases including stem canker observed as a dark brown lesions on developing stems and stolons, and black scurf that develops on new tubers close to the time of harvest. These disease symptoms are collectively called a ‘Rhizoctonia disease complex’. Between the growing seasons R. solani survives in soil and plant debri as sclerotia or as the sclerotia called black scurf on potato tubers which when used as seed offer the main route for dispersal of the fungus to new areas. The reasons for the dominance of AG-3 on potato seem to be attributable to its highly specialization to potato and its ability to infect and form sclerotia efficiently at low temperatures. In this study, a large nationwide survey of R. solani isolates was made in potato crops in Finland. Almost all characterized isolates belonged to AG-3. Additionally, three other AGs (AG-2-1, AG-4 and AG-5) were found associated with symptoms on potato plants but they were weaker pathogens on potato than AG-3 as less prone to form black scurf. According to phylogenetic analysis of the internal transcribed sequences (ITS) of the ribosomal RNA genes the Finnish AG-3 isolates are closely related to each other even though a wide variation of physiological features was observed between them. Detailed analysis of the ITS regions revealed single nucleotide polymorphism in 14 nucleotide positions of ITS-1 and ITS-2. Additionally, compensatory base changes on ITS-2 were detected which suggests that potato-infecting R. solani AG-3 could be considered as a separate species instead of an AG of R. solani. For the first time, molecular defence responses were studied and detected during the early phases of interaction between R. solani AG-3 and potato. Extensive systemic signalling for defence exploiting several known defence pathways was activated as soon as R. solani came into close contact with the base of a sprout. The defence response was strong enough to protect vulnerable sprout tips from new attacks by the pathogen. These results at least partly explain why potato emergence is eventually successful even under heavy infection pressure by R. solani.
Resumo:
The studies presented in this thesis contribute to the understanding of evolutionary ecology of three major viruses threatening cultivated sweetpotato (Ipomoea batatas Lam) in East Africa: Sweet potato feathery mottle virus (SPFMV; genus Potyvirus; Potyviridae), Sweet potato chlorotic stunt virus (SPCSV; genus Crinivirus; Closteroviridae) and Sweet potato mild mottle virus (SPMMV; genus Ipomovirus; Potyviridae). The viruses were serologically detected and the positive results confirmed by RT-PCR and sequencing. SPFMV was detected in 24 wild plant species of family Convolvulacea (genera Ipomoea, Lepistemon and Hewittia), of which 19 species were new natural hosts for SPFMV. SPMMV and SPCSV were detected in wild plants belonging to 21 and 12 species (genera Ipomoea, Lepistemon and Hewittia), respectively, all of which were previously unknown to be natural hosts of these viruses. SPFMV was the most abundant virus being detected in 17% of the plants, while SPMMV and SPCSV were detected in 9.8% and 5.4% of the assessed plants, respectively. Wild plants in Uganda were infected with the East African (EA), common (C), and the ordinary (O) strains, or co-infected with the EA and the C strain of SPFMV. The viruses and virus-like diseases were more frequent in the eastern agro-ecological zone than the western and central zones, which contrasted with known incidences of these viruses in sweetpotato crops, except for northern zone where incidences were lowest in wild plants as in sweetpotato. The NIb/CP junction in SPMMV was determined experimentally which facilitated CP-based phylogenetic and evolutionary analyses of SPMMV. Isolates of all the three viruses from wild plants were genetically similar to those found in cultivated sweetpotatoes in East Africa. There was no evidence of host-driven population genetic structures suggesting frequent transmission of these viruses between their wild and cultivated hosts. The p22 RNA silencing suppressor-encoding sequence was absent in a few SPCSV isolates, but regardless of this, SPCSV isolates incited sweet potato virus disease (SPVD) in sweetpotato plants co-infected with SPFMV, indicating that p22 is redundant for synergism between SCSV and SPFMV. Molecular evolutionary analysis revealed that isolates of strain EA of SPFMV that is largely restricted geographically in East Africa experience frequent recombination in comparison to isolates of strain C that is globally distributed. Moreover, non-homologous recombination events between strains EA and C were rare, despite frequent co-infections of these strains in wild plants, suggesting purifying selection against non-homologous recombinants between these strains or that such recombinants are mostly not infectious. Recombination was detected also in the 5 - and 3 -proximal regions of the SPMMV genome providing the first evidence of recombination in genus Ipomovirus, but no recombination events were detected in the characterized genomic regions of SPCSV. Strong purifying selection was implicated on evolution of majority of amino acids of the proteins encoded by the analyzed genomic regions of SPFMV, SPMMV and SPCSV. However, positive selection was predicted on 17 amino acids distributed over the whole the coat protein (CP) in the globally distributed strain C, as compared to only 4 amino acids in the multifunctional CP N-terminus (CP-NT) of strain EA largely restricted geographically to East Africa. A few amino acid sites in the N-terminus of SPMMV P1, the p7 protein and RNA silencing suppressor proteins p22 and RNase3 of SPCSV were also submitted to positive selection. Positively selected amino acids may constitute ligand-binding domains that determine interactions with plant host and/or insect vector factors. The P1 proteinase of SPMMV (genus Ipomovirus) seems to respond to needs of adaptation, which was not observed with the helper component proteinase (HC-Pro) of SPMMV, although the HC-Pro is responsible for many important molecular interactions in genus Potyvirus. Because the centre of origin of cultivated sweetpotato is in the Americas from where the crop was dispersed to other continents in recent history (except for the Australasia and South Pacific region), it would be expected that identical viruses and their strains occur worldwide, presuming virus dispersal with the host. Apparently, this seems not to be the case with SPMMV, the strain EA of SPFMV and the strain EA of SPCSV that are largely geographically confined in East Africa where they are predominant and occur both in natural and agro-ecosystems. The geographical distribution of plant viruses is constrained more by virus-vector relations than by virus-host interactions, which in accordance of the wide range of natural host species and the geographical confinement to East Africa suggest that these viruses existed in East African wild plants before the introduction of sweetpotato. Subsequently, these studies provide compelling evidence that East Africa constitutes a cradle of SPFMV strain EA, SPCSV strain EA, and SPMMV. Therefore, sweet potato virus disease (SPVD) in East Africa may be one of the examples of damaging virus diseases resulting from exchange of viruses between introduced crops and indigenous wild plant species. Keywords: Convolvulaceae, East Africa, epidemiology, evolution, genetic variability, Ipomoea, recombination, SPCSV, SPFMV, SPMMV, selection pressure, sweetpotato, wild plant species Author s Address: Arthur K. Tugume, Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Latokartanonkaari 7, P.O Box 27, FIN-00014, Helsinki, Finland. Email: tugume.arthur@helsinki.fi Author s Present Address: Arthur K. Tugume, Department of Botany, Faculty of Science, Makerere University, P.O. Box 7062, Kampala, Uganda. Email: aktugume@botany.mak.ac.ug, tugumeka@yahoo.com
Resumo:
A new rock mass classification scheme, the Host Rock Classification system (HRC-system) has been developed for evaluating the suitability of volumes of rock mass for the disposal of high-level nuclear waste in Precambrian crystalline bedrock. To support the development of the system, the requirements of host rock to be used for disposal have been studied in detail and the significance of the various rock mass properties have been examined. The HRC-system considers both the long-term safety of the repository and the constructability in the rock mass. The system is specific to the KBS-3V disposal concept and can be used only at sites that have been evaluated to be suitable at the site scale. By using the HRC-system, it is possible to identify potentially suitable volumes within the site at several different scales (repository, tunnel and canister scales). The selection of the classification parameters to be included in the HRC-system is based on an extensive study on the rock mass properties and their various influences on the long-term safety, the constructability and the layout and location of the repository. The parameters proposed for the classification at the repository scale include fracture zones, strength/stress ratio, hydraulic conductivity and the Groundwater Chemistry Index. The parameters proposed for the classification at the tunnel scale include hydraulic conductivity, Q´ and fracture zones and the parameters proposed for the classification at the canister scale include hydraulic conductivity, Q´, fracture zones, fracture width (aperture + filling) and fracture trace length. The parameter values will be used to determine the suitability classes for the volumes of rock to be classified. The HRC-system includes four suitability classes at the repository and tunnel scales and three suitability classes at the canister scale and the classification process is linked to several important decisions regarding the location and acceptability of many components of the repository at all three scales. The HRC-system is, thereby, one possible design tool that aids in locating the different repository components into volumes of host rock that are more suitable than others and that are considered to fulfil the fundamental requirements set for the repository host rock. The generic HRC-system, which is the main result of this work, is also adjusted to the site-specific properties of the Olkiluoto site in Finland and the classification procedure is demonstrated by a test classification using data from Olkiluoto. Keywords: host rock, classification, HRC-system, nuclear waste disposal, long-term safety, constructability, KBS-3V, crystalline bedrock, Olkiluoto
Resumo:
Ectomycorrhizal formation between the host tree, Pinus sylvestris and fungal symbiont, Suillus bovinus was investigated at the molecular level by isolating genes regulating the organization of the actin cytoskeleton in the fungal partner S. bovinus. An Agrobacterium tumefaciens mediated transformation (ATMT) system was developed for the ectomycorrhizal fungi in order to assign specific functions to the cloned molecules. The developed ATMT system was also used to transform a plant pathogenic fungus, Helminthosporium turcicum, to hygromycin B resistance. Small GTPases Cdc42 and Rac1, the regulators of actin cytoskeleton in eukaryotes were isolated from S. bovinus. Sbcdc42 and Sbrac1, are both expressed in vegetative and in the symbiotic hyphae of S. bovinus . Using IIF microscopy, Cdc42 and actin were co-localized at the tips of vegetative hyphae and were visualized in association with the plasma membrane in swollen cells typical to the symbiotic hyphae. These results suggest that the small GTPases Cdc42 may play a significant role in the polarized growth of S. bovinus hyphae and regulate fungal morphogenesis during ectomycorrhiza formation through reorganization of the actin cytoskeleton. The functional equality of Cdc42 was tested in yeast complementation experiments using a Saccharomyces cerevisiae temperature sensitive mutant, cdc42-1ts. The genomic clone of CDC42 was isolated from S. bovinus genomic DNA via specific primers for Cdc42. The analogous S. cerevisiae cdc42 mutations, dominant active G12V and dominant negative D118A, were generated in the Sbcdc42 gene by in-vitro mutagenesis. The ectomycorrhizal fungi, S. bovinus, P. involutus and H. cylindroporum were transformed using ATMT and phleomycin as a selectable marker. PCR screeing suggested that the T-DNA was inserted in all the three fungal genomes but the fate of integration could not be proved by Southern blot analysis. An alternative Agrobacterium strain, AGL-1 and selection marker, hygromycin was used to transform our model fungus S. bovinus. PCR and Southern analysis suggested an improved efficiency of transformation. All the transformed fungal colonies selected for hygromycin gave positives in PCR and the Southerns showed multiple or single copy T-DNA integrations into the S. bovinus genome. Using the same Agrobacterium strain and the selectable marker, a maize pathogen, H. turcicum was also subjected to ATMT. The H. turcicum transformation data suggested the single copy T-DNA integrations into the genome of the screened transformants that further confirms wider applicability of the ATMT. The plasmids carrying the wild-type (pHGCDC42) and the mutated Sbcdc42 alleles (pHGGV; pHGDA) under Agaricus bisporus gpd promoter were constructed in an A. tumefaciens vector. ATMT was used to transform S. bovinus with the plasmids carrying the wild-type and mutated Sbcdc42 alleles. The isolation of Sbcdc42 and Sbrac1 genes and some other functionally related genes from ectomycorrhizal fungus, S. bovinus will form the basis of future work to resolve the signalling pathway leading to ectomycorrhizal symbiosis. The development of ATMT system will be a valuable tool in analysing the exact function of signalling pathway components in ectomycorrhizal symbiosis or in plant pathogenic interactions. The transformation frequency and broad applicability along with the simplicity of T-DNA integration make Agrobacterium a valuable, new and a powerfull tool for targeted and insertional mutagenesis in these plant associated fungi. The developed ATMT systems should therefore make it possible to generate large number of transformants with tagged genes which could then be screened for their specific roles in symbiosis and pathogenecity, respectively.
Resumo:
Filamentous fungi of the subphylum Pezizomycotina are well known as protein and secondary metabolite producers. Various industries take advantage of these capabilities. However, the molecular biology of yeasts, i.e. Saccharomycotina and especially that of Saccharomyces cerevisiae, the baker's yeast, is much better known. In an effort to explain fungal phenotypes through their genotypes we have compared protein coding gene contents of Pezizomycotina and Saccharomycotina. Only biomass degradation and secondary metabolism related protein families seem to have expanded recently in Pezizomycotina. Of the protein families clearly diverged between Pezizomycotina and Saccharomycotina, those related to mitochondrial functions emerge as the most prominent. However, the primary metabolism as described in S. cerevisiae is largely conserved in all fungi. Apart from the known secondary metabolism, Pezizomycotina have pathways that could link secondary metabolism to primary metabolism and a wealth of undescribed enzymes. Previous studies of individual Pezizomycotina genomes have shown that regardless of the difference in production efficiency and diversity of secreted proteins, the content of the known secretion machinery genes in Pezizomycotina and Saccharomycotina appears very similar. Genome wide analysis of gene products is therefore needed to better understand the efficient secretion of Pezizomycotina. We have developed methods applicable to transcriptome analysis of non-sequenced organisms. TRAC (Transcriptional profiling with the aid of affinity capture) has been previously developed at VTT for fast, focused transcription analysis. We introduce a version of TRAC that allows more powerful signal amplification and multiplexing. We also present computational optimisations of transcriptome analysis of non-sequenced organism and TRAC analysis in general. Trichoderma reesei is one of the most commonly used Pezizomycotina in the protein production industry. In order to understand its secretion system better and find clues for improvement of its industrial performance, we have analysed its transcriptomic response to protein secretion stress conditions. In comparison to S. cerevisiae, the response of T. reesei appears different, but still impacts on the same cellular functions. We also discovered in T. reesei interesting similarities to mammalian protein secretion stress response. Together these findings highlight targets for more detailed studies.
Resumo:
The parasitic wasps are one of the largest insect groups and their life histories are remarkably variable. Common to all parasitic wasps is that they kill their hosts, which are usually beetles, butterflies and sometimes spiders. Hosts are often at a larval or pupal stage and live in concealed conditions, such as in plant tissue. Parasitic wasps have two main ways of finding their host. 1) They can detect chemical compounds emitted by damaged plant material or released by larvae living in plant tissue, and 2) detect the larvae by sound vibrations. Even though pupae are immobile and silent, and therefore do not cause vibration, parasitoids have, however, adapted to find passive developmental stages by producing vibration themselves by knocking the substrate with their antennae, and then detecting the echoes with their legs. This echolocation allows a parasitoid to locate its potential hosts that are deeply buried in wood. This study focuses on the relationships of the subfamily Cryptinae (Hymenoptera: Ichneumonidae) and related taxa, and the evolution of host location mechanism. There are no earlier studies of the phylogeny of the Cryptinae, and the position of related taxa are unclear. According to the earlier classification, which is entirely intuitional, the Cryptinae is divided into three tribes: Cryptini, Hemigasterini and Phygadeuontini. Further, these tribes are subdiveded into numerous subtribes. This work, based on molecular characters, shows that the cryptine tribes Cryptini, Phygadeuon¬tini and Hemigasterini come out largely as monophyletic groups, thus agreeing with the earlier classification. The earlier subtribal classification had no support. In addition, it is shown that modified antennal structures are associated with host usage of wood-boring coleopteran hosts. The cryptines have a clear modification series on their antennal tips from a simply tip to a hammer-like structure. The species with strongly modified antennae belong mostly to the tribe Cryptini and they utilise wood-boring beetles as hosts. Also, field observations on insect behaviour support this result.