17 resultados para Error correction codes

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with using the bootstrap to obtain improved critical values for the error correction model (ECM) cointegration test in dynamic models. In the paper we investigate the effects of dynamic specification on the size and power of the ECM cointegration test with bootstrap critical values. The results from a Monte Carlo study show that the size of the bootstrap ECM cointegration test is close to the nominal significance level. We find that overspecification of the lag length results in a loss of power. Underspecification of the lag length results in size distortion. The performance of the bootstrap ECM cointegration test deteriorates if the correct lag length is not used in the ECM. The bootstrap ECM cointegration test is therefore not robust to model misspecification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This conversation analytical study analyses the interactional practices adopted by speech therapists and their clients during their training in voice therapy. This study also describes how learning takes place during the therapy process. In contrast to traditional voice therapy studies, change is examined here by using qualitative research methodology, namely conversation analysis. This study describes the structures of interaction in voice therapy, shows how the shortcomings in the client s performance are evaluated and corrected and finally, how the voice training sequence and the participation changes during therapy. The database consists of 51 videotaped voice therapy sessions from six clients with voice disorders. The analytic focus is on the practices in one voice training exercise of the trilled /r/. All the sequences of this exercise (in total 36) and all adjacency pairs within (N = 627) were transcribed and analysed in detail. This study shows that voice training consists of successive model imitation adjacency pairs. This adjacency pair works as a resource in voice training. Furthermore, the use of this particular adjacency pair is an institutional practice in all therapies in this study. The structure of interaction in voice training sequences resembles the practices found in aphasia therapy and in speech therapy of children, as well as the practices of educational and counselling interaction and physiotherapy. More than half of the adjacency pairs were expanded to three (or more) part structures as client s responses were typically followed by therapist s feedback. With their feedback turns, therapists: 1) maintain training practice, 2) evaluate the problem of client s performance, 3) deliver information, 4) activate the client to observe the performance and 5) assist her in correcting the performance. This study describes the four different ways that therapists help their clients to improve the performance after encountering a problem. The longitudinal data shows that learning in therapy is manifested in the changing participation. As clients learn to identify their voice features, they can participate in evaluating or correcting their performances by themselves. This study describes the recurrent professional practices of voice therapists and shows how the institutional commitments of voice therapy are managed in and through talk and interaction. The study also provides detailed description of the management of help in voice training. By describing the interaction in training sequences, this study expands the conception of voice rehabilitation and how it can be researched. The results demonstrate that the learning process and therapy outcomes can be assessed by analysing interaction in therapy. Moreover, this analysis lays the foundation for a novel understanding of the practices in speech therapy and for the development of speech therapy theory. By revealing the activities of interaction, it also makes it possible to discuss them explicitly with speech therapy students. Key words: voice therapy, conversation analysis, institutional interaction, learning, change in participation, feedback, evaluation, error correction, self-repair

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis studies binary time series models and their applications in empirical macroeconomics and finance. In addition to previously suggested models, new dynamic extensions are proposed to the static probit model commonly used in the previous literature. In particular, we are interested in probit models with an autoregressive model structure. In Chapter 2, the main objective is to compare the predictive performance of the static and dynamic probit models in forecasting the U.S. and German business cycle recession periods. Financial variables, such as interest rates and stock market returns, are used as predictive variables. The empirical results suggest that the recession periods are predictable and dynamic probit models, especially models with the autoregressive structure, outperform the static model. Chapter 3 proposes a Lagrange Multiplier (LM) test for the usefulness of the autoregressive structure of the probit model. The finite sample properties of the LM test are considered with simulation experiments. Results indicate that the two alternative LM test statistics have reasonable size and power in large samples. In small samples, a parametric bootstrap method is suggested to obtain approximately correct size. In Chapter 4, the predictive power of dynamic probit models in predicting the direction of stock market returns are examined. The novel idea is to use recession forecast (see Chapter 2) as a predictor of the stock return sign. The evidence suggests that the signs of the U.S. excess stock returns over the risk-free return are predictable both in and out of sample. The new "error correction" probit model yields the best forecasts and it also outperforms other predictive models, such as ARMAX models, in terms of statistical and economic goodness-of-fit measures. Chapter 5 generalizes the analysis of univariate models considered in Chapters 2 4 to the case of a bivariate model. A new bivariate autoregressive probit model is applied to predict the current state of the U.S. business cycle and growth rate cycle periods. Evidence of predictability of both cycle indicators is obtained and the bivariate model is found to outperform the univariate models in terms of predictive power.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, focus of real estate investment has expanded from the building-specific level to the aggregate portfolio level. The portfolio perspective requires investment analysis for real estate which is comparable with that of other asset classes, such as stocks and bonds. Thus, despite its distinctive features, such as heterogeneity, high unit value, illiquidity and the use of valuations to measure performance, real estate should not be considered in isolation. This means that techniques which are widely used for other assets classes can also be applied to real estate. An important part of investment strategies which support decisions on multi-asset portfolios is identifying the fundamentals of movements in property rents and returns, and predicting them on the basis of these fundamentals. The main objective of this thesis is to find the key drivers and the best methods for modelling and forecasting property rents and returns in markets which have experienced structural changes. The Finnish property market, which is a small European market with structural changes and limited property data, is used as a case study. The findings in the thesis show that is it possible to use modern econometric tools for modelling and forecasting property markets. The thesis consists of an introduction part and four essays. Essays 1 and 3 model Helsinki office rents and returns, and assess the suitability of alternative techniques for forecasting these series. Simple time series techniques are able to account for structural changes in the way markets operate, and thus provide the best forecasting tool. Theory-based econometric models, in particular error correction models, which are constrained by long-run information, are better for explaining past movements in rents and returns than for predicting their future movements. Essay 2 proceeds by examining the key drivers of rent movements for several property types in a number of Finnish property markets. The essay shows that commercial rents in local markets can be modelled using national macroeconomic variables and a panel approach. Finally, Essay 4 investigates whether forecasting models can be improved by accounting for asymmetric responses of office returns to the business cycle. The essay finds that the forecast performance of time series models can be improved by introducing asymmetries, and the improvement is sufficient to justify the extra computational time and effort associated with the application of these techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this dissertation is to model economic variables by a mixture autoregressive (MAR) model. The MAR model is a generalization of linear autoregressive (AR) model. The MAR -model consists of K linear autoregressive components. At any given point of time one of these autoregressive components is randomly selected to generate a new observation for the time series. The mixture probability can be constant over time or a direct function of a some observable variable. Many economic time series contain properties which cannot be described by linear and stationary time series models. A nonlinear autoregressive model such as MAR model can a plausible alternative in the case of these time series. In this dissertation the MAR model is used to model stock market bubbles and a relationship between inflation and the interest rate. In the case of the inflation rate we arrived at the MAR model where inflation process is less mean reverting in the case of high inflation than in the case of normal inflation. The interest rate move one-for-one with expected inflation. We use the data from the Livingston survey as a proxy for inflation expectations. We have found that survey inflation expectations are not perfectly rational. According to our results information stickiness play an important role in the expectation formation. We also found that survey participants have a tendency to underestimate inflation. A MAR model has also used to model stock market bubbles and crashes. This model has two regimes: the bubble regime and the error correction regime. In the error correction regime price depends on a fundamental factor, the price-dividend ratio, and in the bubble regime, price is independent of fundamentals. In this model a stock market crash is usually caused by a regime switch from a bubble regime to an error-correction regime. According to our empirical results bubbles are related to a low inflation. Our model also imply that bubbles have influences investment return distribution in both short and long run.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Class II division 1 malocclusion occurs in 3.5 to 13 percent of 7 12 year-old children. It is the most common reason for orthodontic treatment in Finland. Correction is most commonly performed using headgear treatment. The aim of this study was to investigate the effects of cervical headgear treatment on dentition, facial skeletal and soft tissue growth, and upper airway structure, in children. 65 schoolchildren, 36 boys and 29 girls were studied. At the onset of treatment a mean age was 9.3 (range 6.6 12.4) years. All the children were consequently referred to an orthodontist because of Class II division 1 malocclusion. The included children had protrusive maxilla and an overjet of more than 2mm (3 to 11 mm). The children were treated with a Kloehn-type cervical headgear as the only appliance until Class I first molar relationships were achieved. The essential features of the headgear were cervical strong pulling forces, a long upward bent outer bow, and an expanded inner bow. Dental casts and lateral and posteroanterior cephalograms were taken before and after the treatment. The results were compared to a historical, cross-sectional Finnish cohort or to historical, age- and sex-matched normal Class I controls. The Class I first molar relationships were achieved in all the treated children. The mean treatment time was 1.7 (range 0.3-3.1) years. Phase 2 treatments were needed in 52% of the children, most often because of excess overjet or overbite. The treatment decreased maxillary protrusion by inhibiting alveolar forward growth, while the rest of the maxilla and mandible followed normal growth. The palate rotated anteriorly downward. The expansion of the inner bow of the headgear induced widening of the maxilla, nasal cavity, and the upper and lower dental arches. Class II malocclusion was associated with narrower oro- and hypopharyngeal space than in the Class I normal controls. The treatment increased the retropalatal airway space, while the rest of the airway remained unaffected. The facial profile improved esthetically, while the facial convexity decreased. Facial soft tissues masked the facial skeletal convexity, and the soft tissue changes were smaller than skeletal changes. In conclusion, the headgear treatment with the expanded inner bow may be used as an easy and simple method for Class II correction in growing children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inadvertent climate modification has led to an increase in urban temperatures compared to the surrounding rural area. The main reason for the temperature rise is the altered energy portioning of input net radiation to heat storage and sensible and latent heat fluxes in addition to the anthropogenic heat flux. The heat storage flux and anthropogenic heat flux have not yet been determined for Helsinki and they are not directly measurable. To the contrary, turbulent fluxes of sensible and latent heat in addition to net radiation can be measured, and the anthropogenic heat flux together with the heat storage flux can be solved as a residual. As a result, all inaccuracies in the determination of the energy balance components propagate to the residual term and special attention must be paid to the accurate determination of the components. One cause of error in the turbulent fluxes is the fluctuation attenuation at high frequencies which can be accounted for by high frequency spectral corrections. The aim of this study is twofold: to assess the relevance of high frequency corrections to water vapor fluxes and to assess the temporal variation of the energy fluxes. Turbulent fluxes of sensible and latent heat have been measured at SMEAR III station, Helsinki, since December 2005 using the eddy covariance technique. In addition, net radiation measurements have been ongoing since July 2007. The used calculation methods in this study consist of widely accepted eddy covariance data post processing methods in addition to Fourier and wavelet analysis. The high frequency spectral correction using the traditional transfer function method is highly dependent on relative humidity and has an 11% effect on the latent heat flux. This method is based on an assumption of spectral similarity which is shown not to be valid. A new correction method using wavelet analysis is thus initialized and it seems to account for the high frequency variation deficit. Anyhow, the resulting wavelet correction remains minimal in contrast to the traditional transfer function correction. The energy fluxes exhibit a behavior characteristic for urban environments: the energy input is channeled to sensible heat as latent heat flux is restricted by water availability. The monthly mean residual of the energy balance ranges from 30 Wm-2 in summer to -35 Wm-2 in winter meaning a heat storage to the ground during summer. Furthermore, the anthropogenic heat flux is approximated to be 50 Wm-2 during winter when residential heating is important.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluates how the advection of precipitation, or wind drift, between the radar volume and ground affects radar measurements of precipitation. Normally precipitation is assumed to fall vertically to the ground from the contributing volume, and thus the radar measurement represents the geographical location immediately below. In this study radar measurements are corrected using hydrometeor trajectories calculated from measured and forecasted winds, and the effect of trajectory-correction on the radar measurements is evaluated. Wind drift statistics for Finland are compiled using sounding data from two weather stations spanning two years. For each sounding, the hydrometeor phase at ground level is estimated and drift distance calculated using different originating level heights. This way the drift statistics are constructed as a function of range from radar and elevation angle. On average, wind drift of 1 km was exceeded at approximately 60 km distance, while drift of 10 km was exceeded at 100 km distance. Trajectories were calculated using model winds in order to produce a trajectory-corrected ground field from radar PPI images. It was found that at the upwind side from the radar the effective measuring area was reduced as some trajectories exited the radar volume scan. In the downwind side areas near the edge of the radar measuring area experience improved precipitation detection. The effect of trajectory-correction is most prominent in instant measurements and diminishes when accumulating over longer time periods. Furthermore, measurements of intensive and small scale precipitation patterns benefit most from wind drift correction. The contribution of wind drift on the uncertainty of estimated Ze (S) - relationship was studied by simulating the effect of different error sources to the uncertainty in the relationship coefficients a and b. The overall uncertainty was assumed to consist of systematic errors of both the radar and the gauge, as well as errors by turbulence at the gauge orifice and by wind drift of precipitation. The focus of the analysis is error associated with wind drift, which was determined by describing the spatial structure of the reflectivity field using spatial autocovariance (or variogram). This spatial structure was then used with calculated drift distances to estimate the variance in radar measurement produced by precipitation drift, relative to the other error sources. It was found that error by wind drift was of similar magnitude with error by turbulence at gauge orifice at all ranges from radar, with systematic errors of the instruments being a minor issue. The correction method presented in the study could be used in radar nowcasting products to improve the estimation of visibility and local precipitation intensities. The method however only considers pure snow, and for operational purposes some improvements are desirable, such as melting layer detection, VPR correction and taking solid state hydrometeor type into account, which would improve the estimation of vertical velocities of the hydrometeors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital elevation models (DEMs) have been an important topic in geography and surveying sciences for decades due to their geomorphological importance as the reference surface for gravita-tion-driven material flow, as well as the wide range of uses and applications. When DEM is used in terrain analysis, for example in automatic drainage basin delineation, errors of the model collect in the analysis results. Investigation of this phenomenon is known as error propagation analysis, which has a direct influence on the decision-making process based on interpretations and applications of terrain analysis. Additionally, it may have an indirect influence on data acquisition and the DEM generation. The focus of the thesis was on the fine toposcale DEMs, which are typically represented in a 5-50m grid and used in the application scale 1:10 000-1:50 000. The thesis presents a three-step framework for investigating error propagation in DEM-based terrain analysis. The framework includes methods for visualising the morphological gross errors of DEMs, exploring the statistical and spatial characteristics of the DEM error, making analytical and simulation-based error propagation analysis and interpreting the error propagation analysis results. The DEM error model was built using geostatistical methods. The results show that appropriate and exhaustive reporting of various aspects of fine toposcale DEM error is a complex task. This is due to the high number of outliers in the error distribution and morphological gross errors, which are detectable with presented visualisation methods. In ad-dition, the use of global characterisation of DEM error is a gross generalisation of reality due to the small extent of the areas in which the decision of stationarity is not violated. This was shown using exhaustive high-quality reference DEM based on airborne laser scanning and local semivariogram analysis. The error propagation analysis revealed that, as expected, an increase in the DEM vertical error will increase the error in surface derivatives. However, contrary to expectations, the spatial au-tocorrelation of the model appears to have varying effects on the error propagation analysis depend-ing on the application. The use of a spatially uncorrelated DEM error model has been considered as a 'worst-case scenario', but this opinion is now challenged because none of the DEM derivatives investigated in the study had maximum variation with spatially uncorrelated random error. Sig-nificant performance improvement was achieved in simulation-based error propagation analysis by applying process convolution in generating realisations of the DEM error model. In addition, typology of uncertainty in drainage basin delineations is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis addresses modeling of financial time series, especially stock market returns and daily price ranges. Modeling data of this kind can be approached with so-called multiplicative error models (MEM). These models nest several well known time series models such as GARCH, ACD and CARR models. They are able to capture many well established features of financial time series including volatility clustering and leptokurtosis. In contrast to these phenomena, different kinds of asymmetries have received relatively little attention in the existing literature. In this thesis asymmetries arise from various sources. They are observed in both conditional and unconditional distributions, for variables with non-negative values and for variables that have values on the real line. In the multivariate context asymmetries can be observed in the marginal distributions as well as in the relationships of the variables modeled. New methods for all these cases are proposed. Chapter 2 considers GARCH models and modeling of returns of two stock market indices. The chapter introduces the so-called generalized hyperbolic (GH) GARCH model to account for asymmetries in both conditional and unconditional distribution. In particular, two special cases of the GARCH-GH model which describe the data most accurately are proposed. They are found to improve the fit of the model when compared to symmetric GARCH models. The advantages of accounting for asymmetries are also observed through Value-at-Risk applications. Both theoretical and empirical contributions are provided in Chapter 3 of the thesis. In this chapter the so-called mixture conditional autoregressive range (MCARR) model is introduced, examined and applied to daily price ranges of the Hang Seng Index. The conditions for the strict and weak stationarity of the model as well as an expression for the autocorrelation function are obtained by writing the MCARR model as a first order autoregressive process with random coefficients. The chapter also introduces inverse gamma (IG) distribution to CARR models. The advantages of CARR-IG and MCARR-IG specifications over conventional CARR models are found in the empirical application both in- and out-of-sample. Chapter 4 discusses the simultaneous modeling of absolute returns and daily price ranges. In this part of the thesis a vector multiplicative error model (VMEM) with asymmetric Gumbel copula is found to provide substantial benefits over the existing VMEM models based on elliptical copulas. The proposed specification is able to capture the highly asymmetric dependence of the modeled variables thereby improving the performance of the model considerably. The economic significance of the results obtained is established when the information content of the volatility forecasts derived is examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual acuities at the time of referral and on the day before surgery were compared in 124 patients operated on for cataract in Vaasa Central Hospital, Finland. Preoperative visual acuity and the occurrence of ocular and general disease were compared in samples of consecutive cataract extractions performed in 1982, 1985, 1990, 1995 and 2000 in two hospitals in the Vaasa region in Finland. The repeatability and standard deviation of random measurement error in visual acuity and refractive error determination in a clinical environment in cataractous, pseudophakic and healthy eyes were estimated by re-examining visual acuity and refractive error of patients referred to cataract surgery or consultation by ophthalmic professionals. Altogether 99 eyes of 99 persons (41 cataractous, 36 pseudophakic and 22 healthy eyes) with a visual acuity range of Snellen 0.3 to 1.3 (0.52 to -0.11 logMAR) were examined. During an average waiting time of 13 months, visual acuity in the study eye decreased from 0.68 logMAR to 0.96 logMAR (from 0.2 to 0.1 in Snellen decimal values). The average decrease in vision was 0.27 logMAR per year. In the fastest quartile, visual acuity change per year was 0.75 logMAR, and in the second fastest 0.29 logMAR, the third and fourth quartiles were virtually unaffected. From 1982 to 2000, the incidence of cataract surgery increased from 1.0 to 7.2 operations per 1000 inhabitants per year in the Vaasa region. The average preoperative visual acuity in the operated eye increased by 0.85 logMAR (in decimal values from 0.03to 0.2) and in the better eye 0.27 logMAR (in decimal values from 0.23 to 0.43) over this period. The proportion of patients profoundly visually handicapped (VA in the better eye <0.1) before the operation fell from 15% to 4%, and that of patients less profoundly visually handicapped (VA in the better eye 0.1 to <0.3) from 47% to 15%. The repeatability visual acuity measurement estimated as a coefficient of repeatability for all 99 eyes was ±0.18 logMAR, and the standard deviation of measurement error was 0.06 logMAR. Eyes with the lowest visual acuity (0.3-0.45) had the largest variability, the coefficient of repeatability values being ±0.24 logMAR and eyes with a visual acuity of 0.7 or better had the smallest, ±0.12 logMAR. The repeatability of refractive error measurement was studied in the same patient material as the repeatability of visual acuity. Differences between measurements 1 and 2 were calculated as three-dimensional vector values and spherical equivalents and expressed by coefficients of repeatability. Coefficients of repeatability for all eyes for vertical, torsional and horisontal vectors were ±0.74D, ±0.34D and ±0.93D, respectively, and for spherical equivalent for all eyes ±0.74D. Eyes with lower visual acuity (0.3-0.45) had larger variability in vector and spherical equivalent values (±1.14), but the difference between visual acuity groups was not statistically significant. The difference in the mean defocus equivalent between measurements 1 and 2 was, however, significantly greater in the lower visual acuity group. If a change of ±0.5D (measured in defocus equivalents) is accepted as a basis for change of spectacles for eyes with good vision, the basis for eyes in the visual acuity range of 0.3 - 0.65 would be ±1D. Differences in repeated visual acuity measurements are partly explained by errors in refractive error measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate and stable time series of geodetic parameters can be used to help in understanding the dynamic Earth and its response to global change. The Global Positioning System, GPS, has proven to be invaluable in modern geodynamic studies. In Fennoscandia the first GPS networks were set up in 1993. These networks form the basis of the national reference frames in the area, but they also provide long and important time series for crustal deformation studies. These time series can be used, for example, to better constrain the ice history of the last ice age and the Earth s structure, via existing glacial isostatic adjustment models. To improve the accuracy and stability of the GPS time series, the possible nuisance parameters and error sources need to be minimized. We have analysed GPS time series to study two phenomena. First, we study the refraction in the neutral atmosphere of the GPS signal, and, second, we study the surface loading of the crust by environmental factors, namely the non-tidal Baltic Sea, atmospheric load and varying continental water reservoirs. We studied the atmospheric effects on the GPS time series by comparing the standard method to slant delays derived from a regional numerical weather model. We have presented a method for correcting the atmospheric delays at the observational level. The results show that both standard atmosphere modelling and the atmospheric delays derived from a numerical weather model by ray-tracing provide a stable solution. The advantage of the latter is that the number of unknowns used in the computation decreases and thus, the computation may become faster and more robust. The computation can also be done with any processing software that allows the atmospheric correction to be turned off. The crustal deformation due to loading was computed by convolving Green s functions with surface load data, that is to say, global hydrology models, global numerical weather models and a local model for the Baltic Sea. The result was that the loading factors can be seen in the GPS coordinate time series. Reducing the computed deformation from the vertical time series of GPS coordinates reduces the scatter of the time series; however, the long term trends are not influenced. We show that global hydrology models and the local sea surface can explain up to 30% of the GPS time series variation. On the other hand atmospheric loading admittance in the GPS time series is low, and different hydrological surface load models could not be validated in the present study. In order to be used for GPS corrections in the future, both atmospheric loading and hydrological models need further analysis and improvements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A better understanding of the limiting step in a first order phase transition, the nucleation process, is of major importance to a variety of scientific fields ranging from atmospheric sciences to nanotechnology and even to cosmology. This is due to the fact that in most phase transitions the new phase is separated from the mother phase by a free energy barrier. This barrier is crossed in a process called nucleation. Nowadays it is considered that a significant fraction of all atmospheric particles is produced by vapor-to liquid nucleation. In atmospheric sciences, as well as in other scientific fields, the theoretical treatment of nucleation is mostly based on a theory known as the Classical Nucleation Theory. However, the Classical Nucleation Theory is known to have only a limited success in predicting the rate at which vapor-to-liquid nucleation takes place at given conditions. This thesis studies the unary homogeneous vapor-to-liquid nucleation from a statistical mechanics viewpoint. We apply Monte Carlo simulations of molecular clusters to calculate the free energy barrier separating the vapor and liquid phases and compare our results against the laboratory measurements and Classical Nucleation Theory predictions. According to our results, the work of adding a monomer to a cluster in equilibrium vapour is accurately described by the liquid drop model applied by the Classical Nucleation Theory, once the clusters are larger than some threshold size. The threshold cluster sizes contain only a few or some tens of molecules depending on the interaction potential and temperature. However, the error made in modeling the smallest of clusters as liquid drops results in an erroneous absolute value for the cluster work of formation throughout the size range, as predicted by the McGraw-Laaksonen scaling law. By calculating correction factors to Classical Nucleation Theory predictions for the nucleation barriers of argon and water, we show that the corrected predictions produce nucleation rates that are in good comparison with experiments. For the smallest clusters, the deviation between the simulation results and the liquid drop values are accurately modelled by the low order virial coefficients at modest temperatures and vapour densities, or in other words, in the validity range of the non-interacting cluster theory by Frenkel, Band and Bilj. Our results do not indicate a need for a size dependent replacement free energy correction. The results also indicate that Classical Nucleation Theory predicts the size of the critical cluster correctly. We also presents a new method for the calculation of the equilibrium vapour density, surface tension size dependence and planar surface tension directly from cluster simulations. We also show how the size dependence of the cluster surface tension in equimolar surface is a function of virial coefficients, a result confirmed by our cluster simulations.