3 resultados para Dualité de Poincaré

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gravitaation kvanttiteorian muotoilu on ollut teoreettisten fyysikkojen tavoitteena kvanttimekaniikan synnystä lähtien. Kvanttimekaniikan soveltaminen korkean energian ilmiöihin yleisen suhteellisuusteorian viitekehyksessä johtaa aika-avaruuden koordinaattien operatiiviseen ei-kommutoivuuteen. Ei-kommutoivia aika-avaruuden geometrioita tavataan myös avointen säikeiden säieteorioiden tietyillä matalan energian rajoilla. Ei-kommutoivan aika-avaruuden gravitaatioteoria voisi olla yhteensopiva kvanttimekaniikan kanssa ja se voisi mahdollistaa erittäin lyhyiden etäisyyksien ja korkeiden energioiden prosessien ei-lokaaliksi uskotun fysiikan kuvauksen, sekä tuottaa yleisen suhteellisuusteorian kanssa yhtenevän teorian pitkillä etäisyyksillä. Tässä työssä tarkastelen gravitaatiota Poincarén symmetrian mittakenttäteoriana ja pyrin yleistämään tämän näkemyksen ei-kommutoiviin aika-avaruuksiin. Ensin esittelen Poincarén symmetrian keskeisen roolin relativistisessa fysiikassa ja sen kuinka klassinen gravitaatioteoria johdetaan Poincarén symmetrian mittakenttäteoriana kommutoivassa aika-avaruudessa. Jatkan esittelemällä ei-kommutoivan aika-avaruuden ja kvanttikenttäteorian muotoilun ei-kommutoivassa aika-avaruudessa. Mittasymmetrioiden lokaalin luonteen vuoksi tarkastelen huolellisesti mittakenttäteorioiden muotoilua ei-kommutoivassa aika-avaruudessa. Erityistä huomiota kiinnitetään näiden teorioiden vääristyneeseen Poincarén symmetriaan, joka on ei-kommutoivan aika-avaruuden omaama uudentyyppinen kvanttisymmetria. Seuraavaksi tarkastelen ei-kommutoivan gravitaatioteorian muotoilun ongelmia ja niihin kirjallisuudessa esitettyjä ratkaisuehdotuksia. Selitän kuinka kaikissa tähänastisissa lähestymistavoissa epäonnistutaan muotoilla kovarianssi yleisten koordinaattimunnosten suhteen, joka on yleisen suhteellisuusteorian kulmakivi. Lopuksi tutkin mahdollisuutta yleistää vääristynyt Poincarén symmetria lokaaliksi mittasymmetriaksi --- gravitaation ei-kommutoivan mittakenttäteorian saavuttamisen toivossa. Osoitan, että tällaista yleistystä ei voida saavuttaa vääristämällä Poincarén symmetriaa kovariantilla twist-elementillä. Näin ollen ei-kommutoivan gravitaation ja vääristyneen Poincarén symmetrian tutkimuksessa tulee jatkossa keskittyä muihin lähestymistapoihin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efforts of combining quantum theory with general relativity have been great and marked by several successes. One field where progress has lately been made is the study of noncommutative quantum field theories that arise as a low energy limit in certain string theories. The idea of noncommutativity comes naturally when combining these two extremes and has profound implications on results widely accepted in traditional, commutative, theories. In this work I review the status of one of the most important connections in physics, the spin-statistics relation. The relation is deeply ingrained in our reality in that it gives us the structure for the periodic table and is of crucial importance for the stability of all matter. The dramatic effects of noncommutativity of space-time coordinates, mainly the loss of Lorentz invariance, call the spin-statistics relation into question. The spin-statistics theorem is first presented in its traditional setting, giving a clarifying proof starting from minimal requirements. Next the notion of noncommutativity is introduced and its implications studied. The discussion is essentially based on twisted Poincaré symmetry, the space-time symmetry of noncommutative quantum field theory. The controversial issue of microcausality in noncommutative quantum field theory is settled by showing for the first time that the light wedge microcausality condition is compatible with the twisted Poincaré symmetry. The spin-statistics relation is considered both from the point of view of braided statistics, and in the traditional Lagrangian formulation of Pauli, with the conclusion that Pauli's age-old theorem stands even this test so dramatic for the whole structure of space-time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the thesis I study various quantum coherence phenomena and create some of the foundations for a systematic coherence theory. So far, the approach to quantum coherence in science has been purely phenomenological. In my thesis I try to answer the question what quantum coherence is and how it should be approached within the framework of physics, the metatheory of physics and the terminology related to them. It is worth noticing that quantum coherence is a conserved quantity that can be exactly defined. I propose a way to define quantum coherence mathematically from the density matrix of the system. Degenerate quantum gases, i.e., Bose condensates and ultracold Fermi systems, form a good laboratory to study coherence, since their entropy is small and coherence is large, and thus they possess strong coherence phenomena. Concerning coherence phenomena in degenerate quantum gases, I concentrate in my thesis mainly on collective association from atoms to molecules, Rabi oscillations and decoherence. It appears that collective association and oscillations do not depend on the spin-statistics of particles. Moreover, I study the logical features of decoherence in closed systems via a simple spin-model. I argue that decoherence is a valid concept also in systems with a possibility to experience recoherence, i.e., Poincaré recurrences. Metatheoretically this is a remarkable result, since it justifies quantum cosmology: to study the whole universe (i.e., physical reality) purely quantum physically is meaningful and valid science, in which decoherence explains why the quantum physical universe appears to cosmologists and other scientists very classical-like. The study of the logical structure of closed systems also reveals that complex enough closed (physical) systems obey a principle that is similar to Gödel's incompleteness theorem of logic. According to the theorem it is impossible to describe completely a closed system within the system, and the inside and outside descriptions of the system can be remarkably different. Via understanding this feature it may be possible to comprehend coarse-graining better and to define uniquely the mutual entanglement of quantum systems.