39 resultados para Cation hydrolysis

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Place identification is the methodology of automatically detecting spatial regions or places that are meaningful to a user by analysing her location traces. Following this approach several algorithms have been proposed in the literature. Most of the algorithms perform well on a particular data set with suitable choice of parameter values. However, tuneable parameters make it difficult for an algorithm to generalise to data sets collected from different geographical locations, different periods of time or containing different activities. This thesis compares the generalisation performance of our proposed DPCluster algorithm along with six state-of-the-art place identification algorithms on twelve location data sets collected using Global Positioning System (GPS). Spatial and temporal variations present in the data help us to identify strengths and weaknesses of the place identification algorithms under study. We begin by discussing the notion of a place and its importance in location-aware computing. Next, we discuss different phases of the place identification process found in the literature followed by a thorough description of seven algorithms. After that, we define evaluation metrics and compare generalisation performance of individual place identification algorithms and report the results. The results indicate that the DPCluster algorithm performs superior to all other algorithms in terms of generalisation performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cation-Cl- cotransporter (CCC) family comprises of Na+-Cl- cotransporter (NCC), Na+-K+-2Cl- cotransporters (NKCC1-2), and four K+-Cl- cotransporters (KCC1-4). These proteins are involved in several physiological activities, such as cell volume regulation. In neuronal tissues, NKCC1 and KCC2 are important in determining the intracellular Cl- levels and hence the neuronal responses to inhibitory neurotransmitters GABA and glycine. One aim of the work was to elucidate the roles for CCC isoforms in the control of nervous system development. KCC2 mRNA was shown to be developmentally up-regulated and follow neuronal maturation, whereas NKCC1 and KCC4 transcripts were highly expressed in the proliferative zones of subcortical regions. KCC1 and KCC3 mRNA displayed low expression throughout the embryogenesis. These expression profiles suggest a role for CCC isoforms in maturation of synaptic responses and in the regulation of neuronal proliferation during embryogenesis. The major aim of this work was to study the biological consequences of KCC2-deficiency in the adult CNS, by generating transgenic mice retaining 15-20% of normal KCC2 levels. In addition, by using these mice as a tool for in vivo pharmacological analysis, we investigated the requirements for KCC2 in tonic versus phasic GABAA receptor-mediated inhibition. KCC2-deficient mice displayed normal reproduction and life span, but showed several behavioral abnormalities, including increased anxiety-like behavior, impaired performance in water maze, alterations in nociceptive processing, and increased seizure susceptibility. In contrast, the mice displayed apparently normal spontaneous locomotor activity and motor coordination. Pharmacological analysis of KCC2-deficient mice revealed reduced sensititivity to diazepam, but normal gaboxadol-induced sedation, neurosteroid hypnosis and alcohol-induced motor impairment. Electrophysiological recordings from CA1-CA3 subregions of the hippocampus showed that KCC2 deficiency affected the reversal potentials of both the phasic and tonic GABA currents, and that the tonic conductance was not affected. The results suggest that requirement for KCC2 in GABAergic neurotransmission may differ among several functional systems in the CNS, which is possibly due to the more critical role of KCC2 activity in phasic compared to tonic GABAergic inhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is based on the multidiciplinary approach of using natural colorants as textile dyes. The author was interested in both the historical and traditional aspects of natural dyeing as well as the modern industrial applications of the pure natural compounds. In the study, the anthraquinone compounds were isolated as aglycones from the ectomycorrhizal fungus Dermocybe sanguinea. The endogenous beta-glucosidase of the fungus was used to catalyse the hydrolysis of the O-glycosyl linkage in emodin- and dermocybin-1-beta-D-glucopyranosides. The method, in which 10.45 kg of fresh fungi was starting material, yielded two fractions: 56.0 g of Fraction 1 (94% of the total amount of pigment,) consisting almost exclusively of the main pigments emodin and dermocybin, and 3.3 g of Fraction 2 (6%) consisting mainly of the anthraquinone carboxylic acids. The anthraquinone compounds in Fractions 1 and 2 were separated by one- and two-dimensional thin-layer-chromatography (TLC) using silica plates. 1D TLC showed that neither an acidic nor a basic solvent system alone separated completely all the anthraquinones isolated from D. sanguinea, in spite of the variation of the rations of the solvent components in the systems. Thus, a new 2D TLC technique was developed, applying n-pentanol-pyridine-methanol (6:4:3, v/v/v) and toluene-ethyl acetate-ethanol-formic acid (10:8:1:2, v/v/v/v) as eluents. Fifteen different anthraquinone derivatives were completely separated from one another. Emodin, physcion, endocrocin, dermolutein, dermorubin, 5-chlorodermorubin, emodin-1-beta-D-glucopyranoside, dermocybin-1-beta-D-glucopyranoside and dermocybin, and five new compounds, not earlier identified in D. sanguinea, 7-chloroemodin, 5,7-dichloroemodin, 5,7-dichloroendocrocin, 4-hydroxyaustrocorticone and austrocorticone, were separated and identified on the basis of their Rf-values, UV/Vis spectra and mass spectra. One substance remained unidentified, because of its very low concentration. The anthraquinones in Fractions 1 and 2 were preparatively separeted by liquid-liquid partition, with isopropylmethyl ketone and aqueous phosphate buffer as the solvent system. Advantage was taken of the principle of stepwise pH-gradient elution. The multiple liquid-liquid partition (MLLP) offered an excellent method for the preparative separation of compounds, which contain acidic groups such as the phenolic OH and COOH groups. Due to their strong aggregation properties, these compounds are, without derivatization, very difficult to separate on a preparative scale by chromatographic methods. By the MLLP method remarkable separations were achieved for the components in each mixture. Emodin and dermocybin were both obtained from Fraction 1 in a purity of at least 99%. Pure emodin and dermocybin were applied as mordant dyes to wool and polyamide and as disperse dyes to polyester and polyamide, using the high temperature (HT) technique. A mixture of dermorubin and 5-chlorodermorubin was applied as an acid dye to wool. In these experiments, synthetic dyes were used as references. Experiments were also performed using water extract of the air-dried fungi as dye liquor for wool and silk. The main colouring compounds in the crude water extract were emodin and dermocybin, which indicated that the O-glycosyl linkages in emodin- and dermocybin-1-beta-D-glucopyranosides were broken by the beta-glucosidase enzyme. Apparently, the hydrolysis occurred during the drying of the fungi and during the soaking of the dried fruit bodies overnight when preparing the dyebath. The colour of each dyed material was investigated in terms of the CIELAB L*, a* and b* values, and the colour fastness to light, washing and rubbing was tested according to the ISO standards. In the mordant dyeing experiments, emodin dyed wool and polyamide yellow and red, depending on the pH of the dyebath. Dermocybin gave purple and violet colours. The colour fastness of the mordant-dyed fabrics varied from good to moderate. The fastness properties of the natural anthraquinone carboxylic acids on wool were good, indicating the strength of the ionic bonds between the COO- groups of the dyes and the NH3+ groups of the fibres. In the disperse dyeing experiments, emodin dyed polyester bright yellow and dermocybin bright reddish-orange, and the fabrics showed excellent colour fastness. In contrast, emodin and dermocybin successfully dyed polyamide brownish-orange and wine-red, respectively, but with only moderate fastness. In industrial dyeing processes, natural anthraquinone aglycone mixtures dyed wool and silk well even at low concentrations of mordants, i.e. with 10% of the weight of the fibre (owf) of KAl(SO4)2 and 1 or 0.5% owf of other mordants. This study showed that purified natural anthraquinone compounds can produce bright hues with good colour-fastness properties in different textile materials. Natural anthraquinones have a significant potential for new dyeing techniques and will provide useful alternatives to synthetic dyes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atherosclerosis is a disease of the arteries; its characteristic features include chronic inflammation, extra- and intracellular lipid accumulation, extracellular matrix remodeling, and an increase in extracellular matrix volume. The underlying mechanisms in the pathogenesis of advanced atherosclerotic plaques, that involve local acidity of the extracellular fluid, are still incompletely understood. In this thesis project, my co-workers and I studied the different mechanisms by which local extracellular acidity could promote accumulation of the atherogenic apolipoprotein B-100 (apoB-100)-containing plasma lipoprotein particles in the inner layer of the arterial wall, the intima. We found that lipolysis of atherogenic apoB-100-containing plasma lipoprotein particles (LDL, IDL, and sVLDL) by the secretory phospholipase A2 group V (sPLA2-V) enzyme, was increased at acidic pH. Also, the binding of apoB-100-containing plasma lipoprotein particles to human aortic proteoglycans was dramatically enhanced at acidic pH. Additionally, lipolysis by sPLA2-V enzyme further increased this binding. Using proteoglycan-affinity chromatography, we found that sVLDL lipoprotein particles consist of populations, differing in their affinities toward proteoglycans. These populations also contained different amounts of apolipoprotein E (apoE) and apolipoprotein C-III (apoC-III); the amounts of apoC-III and apoE per particle were highest in the population with the lowest affinity toward proteoglycans. Since PLA2-modification of LDL particles has been shown to change their aggregation behavior, we also studied the effect of acidic pH on the monolayer structure covering lipoprotein particles after PLA2-induced hydrolysis. Using molecular dynamics simulations, we found that, in acidity, the monolayer is more tightly packed laterally; moreover, its spontaneous curvature is negative, suggesting that acidity may promote lipoprotein particles fusion. In addition to extracellular lipid accumulation, the apoB-100-containing plasma lipoprotein particles can be taken up by inflammatory cells, namely macrophages. Using radiolabeled lipoprotein particles and cell cultures, we showed that sPLA2-V-modification of LDL, IDL, and sVLDL lipoproteins particles, at neutral or acidic pH, increased their uptake by human monocyte-derived macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increased consumption of low-fat milk products is inversely associated with the risk of hypertension. The beneficial effect of milk on blood pressure is attributed to high calcium and potassium content but also to specific peptide sequences, which are cleaved from milk protein during gastrointestinal digestion, fermentation of milk with proteolytic starter cultures or enzymatic hydrolysis. Milk products fermented with Lactobacillus helveticus contain casein-derived tripeptides isoleucine-proline-proline (Ile-Pro-Pro) and valine-proline-proline (Val-Pro-Pro), which have been shown to possess antihypertensive effects in humans and in experimental animals. The aim of the present series of studies was to investigate the effects of tripeptides Ile-Pro-Pro and Val-Pro-Pro or fermented milk products containing them on vascular function and blood pressure and to elucidate the mechanisms behind them by using different experimental models of hypertension. Another aim was to characterize the acute effects of tripeptides on blood pressure and arterial stiffness in mildly hypertensive humans. Ile-Pro-Pro and Val-Pro-Pro or fermented milk products containing them attenuated the development of hypertension in two experimental models of hypertension, spontaneously hypertensive rat (SHR) and type 2 diabetic Goto-Kakizaki (GK) rat fed with high-salt diet. Significant differences in systolic blood pressure (SBP) were seen after 8 weeks treatment with tripeptide-containing products compared to control product. Plant sterols did not enhance this effect. Two differently produced tripeptide powders produced a similar attenuating effect on SBP in SHR. In mildly hypertensive subjects, a single administration of tripeptide- and plant sterol-containing fermented milk product decreased both SBP and diastolic blood pressure (DBP) over a period of 8 hours. Protective effect of tripeptides Ile-Pro-Pro and Val-Pro-Pro and fermented milk products containing them on vascular function was demonstrated in in vitro studies and long-term experimental studies. The effect was shown to be endothelium-dependent and possibly involving endothelium-derived hyperpolarizing factor (EDHF). In the clinical study, single administration of tripeptide-containing fermented milk product did not affect measures of arterial stiffness. Long-term treatment with fermented milk product containing Ile-Pro-Pro and Val-Pro-Pro inhibited angiotensin-converting enzyme (ACE) and decreased aldosterone levels thus showing beneficial effects on the renin-angiotensin system (RAS) in SHR and GK. No changes in the components of RAS were observed by the single administration of the same product in mildly hypertensive subjects. Increased levels of cGMP, NOx and citrulline suggest increased nitric oxide (NO) production by the tripeptides. Taken together, Ile-Pro-Pro and Val-Pro-Pro -containing products attenuate the development of hypertension after long-term treatment in experimental models of hypertension and possess an acute antihypertensive effect in mildly hypertensive subjects. In addition, these tripeptides show endothelium-mediated beneficial effects on vascular function. Attenuation of blood pressure increase by the tripeptides in experimental animals involves RAS, but its role in the antihypertensive effect in humans remains to be elucidated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structures of (1→3),(1→4)-β-D-glucans of oat bran, whole-grain oats and barley and processed foods were analysed. Various methods of hydrolysis of β-glucan, the content of insoluble fibre of whole grains of oats and barley and the solution behaviour of oat and barley β-glucans were studied. The isolated soluble β-glucans of oat bran and whole-grain oats and barley were hydrolysed with lichenase, an enzyme specific for (1→3),(1→4)-β-D-β-glucans. The amounts of oligosaccharides produced from bran were analysed with capillary electrophoresis and those from whole-grains with high-performance anion-exchange chromatography with pulse-amperometric detection. The main products were 3-O-β-cellobiosyl-D-glucose and 3-O-β-cellotriosyl-D-glucose, the oligosaccharides which have a degree of polymerisation denoted by DP3 and DP4. Small differences were detected between soluble and insoluble β-glucans and also between β-glucans of oats and barley. These differences can only be seen in the DP3:DP4 ratio which was higher for barley than for oat and also higher for insoluble than for soluble β-glucan. A greater proportion of barley β-glucan remained insoluble than of oat β-glucan. The molar masses of soluble β-glucans of oats and barley were the same as were those of insoluble β-glucans of oats and barley. To analyse the effects of cooking, baking, fermentation and drying, β-glucan was isolated from porridge, bread and fermentate and also from their starting materials. More β-glucan was released after cooking and less after baking. Drying decreased the extractability for bread and fermentate but increased it for porridge. Different hydrolysis methods of β-glucan were compared. Acid hydrolysis and the modified AOAC method gave similar results. The results of hydrolysis with lichenase gave higher recoveries than the other two. The combination of lichenase hydrolysis and high-performance anion-exchange chromatography with pulse-amperometric detection was found best for the analysis of β-glucan content. The content of insoluble fibre was higher for barley than for oats and the amount of β-glucan in the insoluble fibre fraction was higher for oats than for barley. The flow properties of both water and aqueous cuoxam solutions of oat and barley β-glucans were studied. Shear thinning was stronger for the water solutions of oat β-glucan than for barley β-glucan. In aqueous cuoxam shear thinning was not observed at the same concentration as in water but only with high concentration solutions. Then the viscosity of barley β-glucan was slightly higher than that of oat β-glucan. The oscillatory measurements showed that the crossover point of the G´ and G´´ curves was much lower for barley β-glucan than for oat β-glucan indicating a higher tendency towards solid-like behaviour for barley β-glucan than for oat β-glucan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type A lantibiotic nisin produced by several Lactococcus lactis strains, and one Streptococcus uberis strainis a small antimicrobial peptide that inhibits the growth of a wide range of gram-positive bacteria, such as Bacillus, Clostridium, Listeria and Staphylococcus species. It is nontoxic to humans and used as a food preservative (E234) in more than 50 countries including the EU, the USA, and China. National legislations concerning maximum addition levels of nisin in different foods vary greatly. Therefore, there is a demand for non-laborious and sensitive methods to identify and quantify nisin reliably from different food matrices. The horizontal inhibition assay, based on the inhibitory effect of nisin to Micrococcus luteus is the base for most quantification methods developed so far. However, the sensitivity and accuracy of the agar diffusion method is affected by several parameters. Immunological tests have also been described. Taken into account the sensitivity of immunological methods to interfering substances within sample matrices, and possible cross-reactivities with lantibiotics structurally close to nisin, their usefulness for nisin detection from food samples remains limited. The proteins responsible for nisin biosynthesis, and producer self-immunity are encoded by genes arranged into two inducible operons, nisA/Z/QBTCIPRK and nisFEG, which also contain internal, constitutive promoters PnisI and PnisR. The transmembrane histidine kinase NisK and the response regulator NisR form a two-component signal transduction system, in which NisK autophosphorylates after exposure to extra cellular nisin, and subsequently transfers the phosphate to NisR. The phosphorylated NisR then relays the signal downstream by binding to two regulated promoters in the nisin gene cluster, i.e the nisA/Z/Qand the nisF promoters, thus activating transcription of the structural gene nisA/Z/Q and the downstream genes nisBTCIPRK from the nisA/Z/Q promoter, and the genes nisFEG from the nisF promoter. In this work two novel and highly sensitive nisin bioassays were developed. Both of these quantification methods were based on NisRK mediated, nisin induced Green Fluorescent Protein (GFP) fluorescence. The suitabilities of these assays for quantifica¬tion of nisin from food samples were evaluated in several food matrices. These bioassays had nisin sensitivities in the nanogram or picogram levels. In addition, shelf life of nisin in cooked sausages and retainment of the induction activity of nisin in intestinal chyme (intestinal content) was assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

B. cereus is one of the most frequent occurring bacteria in foods . It produces several heat-labile enterotoxins and one stable non-protein toxin, cereulide (emetic), which may be pre-formed in food. Cereulide is a heat stable peptide whose structure and mechanism of action were in the past decade elucidated. Until this work, the detection of cereulide was done by biological assays. With my mentors, I developed the first quantitative chemical assay for cereulide. The assay is based on liquid chromatography (HPLC) combined with ion trap mass spectrometry and the calibration is done with valinomycin and purified cereulide. To detect and quantitate valinomycin and cereulide, their [NH4+] adducts, m/z 1128.9 and m/z 1171 respectively, were used. This was a breakthrough in the cereulide research and became a very powerful tool of investigation. This tool made it possible to prove for the first time that the toxin produced by B. cereus in heat-treated food caused human illness. Until this thesis work (Paper II), cereulide producing B. cereus strains were believed to represent a homogenous group of clonal strains. The cereulide producing strains investigated in those studies originated mostly from food poisoning incidents. We used strains of many origins and analyzed them using a polyphasic approach. We found that the cereulide producing B. cereus strains are genetically and biologically more diverse than assumed in earlier studies. The strains diverge in the adenylate kinase (adk) gene (two sequence types), in ribopatterns obtained with EcoRI and PvuII (three patterns), tyrosin decomposition, haemolysis and lecithine hydrolysis (two phenotypes). Our study was the first demonstration of diversity within the cereulide producing strains of B. cereus. To manage the risk for cereulide production in food, understanding is needed on factors that may upregulate cereulide production in a given food matrix and the environmental factors affecting it. As a contribution towards this direction, we adjusted the growth environment and measured the cereulide production by strains selected for diversity. The temperature range where cereulide is produced was narrower than that for growth for most of the producer strains. Most cereulide was by most strains produced at room temperature (20 - 23ºC). Exceptions to this were two faecal isolates which produced the same amount of cereulide from 23 ºC up until 39ºC. We also found that at 37º C the choice of growth media for cereulide production differed from that at the room temperature. The food composition and temperature may thus be a key for understanding cereulide production in foods as well as in the gut. We investigated the contents of [K+], [Na+] and amino acids of six growth media. Statistical evaluation indicated a significant positive correlation between the ratio [K+]:[Na+] and the production of cereulide, but only when the concentrations of glycine and [Na+] were constant. Of the amino acids only glycine correlated positively with high cereulide production. Glycine is used worldwide as food additive (E 640), flavor modifier, humectant, acidity regulator, and is permitted in the European Union countries, with no regulatory quantitative limitation, in most types of foods. B. subtilis group members are endospore-forming bacteria ubiquitous in the environment, similar to B. cereus in this respect. Bacillus species other than B. cereus have only sporadically been identified as causative agents of food-borne illnesses. We found (Paper IV) that food-borne isolates of B. subtilis and B. mojavensis produced amylosin. It is possible that amylosin was the agent responsible for the food-borne illness, since no other toxic substance was found in the strains. This is the first report on amylosin production by strains isolated from food. We found that the temperature requirement for amylosin production was higher for the B. subtilis strain F 2564/96, a mesophilic producer, than for B. mojavensis strains eela 2293 and B 31, psychrotolerant producers. We also found that an atmosphere with low oxygen did not prevent the production of amylosin. Ready-to-eat foods packaged in micro-aerophilic atmosphere and/or stored at temperatures above 10 °C, may thus pose a risk when toxigenic strains of B. subtilis or B. mojavensis are present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nutrition affects bone health throughout life. To optimize peak bone mass development and maintenance, it is important to pay attention to the dietary factors that enhance and impair bone metabolism. In this study, the in vivo effects of inorganic dietary phosphate and the in vitro effects of bioactive tripeptides, IPP, VPP and LKP were investigated. Dietary phosphate intake is increased through the use of convenience foods and soft drinks rich in phosphate-containing food additives. Our results show that increased dietary phosphate intake hinders mineral deposition in cortical bone and diminishes bone mineral density (BMD) in the aged skeleton in a rodent model (Study I). In the growing skeleton (Study II), increased phosphate intake was observed to reduce bone material and structural properties, leading to diminished bone strength. Studies I and II revealed that a low Ca:P ratio has negative effects on the mature and growing rat skeleton even when calcium intake is sufficient. High dietary protein intake is beneficial for bone health. Protein is essential for bone turnover and matrix formation. In addition, hydrolysis of proteins in the gastrointestinal tract produces short peptides that possess a biological function beyond that of being tissue building blocks. The effects of three bioactive tripeptides, IPP, VPP and LKP, were assessed in short- and long-term in vitro experiments. Short-term treatment (24 h) with tripeptide IPP, VPP or LKP influenced osteoblast gene expression (Study III). IPP in particular, regulates genes associated with cell differentiation, cell growth and cell signal transduction. The upregulation of these genes indicates that IPP enhances osteoblast proliferation and differentiation. Long-term treatment with IPP enhanced osteoblast gene expression in favour of bone formation and increased mineralization (Study IV). The in vivo effects of IPP on osteoblast differentiation might differ since eating frequency drives food consumption, and protein degradation products, such as bioactive peptides, are available periodically, not continuously as in this study. To sum up, Studies I and II raise concern about the appropriate amount of dietary phosphate to support bone health as excess is harmful. Studies III and IV in turn, support findings of the beneficial effects of dietary protein on bone and provide a mechanistic explanation since cell proliferation and osteoblast function were improved by treatment with bioactive tripeptide IPP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cereal kernels are known to contain a number of minor components that possess beneficial health attributes. In this thesis rye and wheat were studied as sources of steryl ferulates and steryl glycosides and their behaviour in processing were evaluated. Further, enzymatic hydrolysis of these conjugates was studied, as well as the capacity of steryl ferulates to inhibit lipid oxidation at different temperatures. Steryl ferulates were shown to have a strong positive correlation with dietary fibre contents in milling fractions from the outer parts of the kernels obtained from a commercial scale mill. Highest contents of steryl ferulates were found in the bran in both cereals, with the content decreasing once moving towards the inner parts of the kernel. Variation in the contents of steryl ferulates was higher in wheat fractions than rye fractions. Steryl glycosides, on the other hand, had either negative or no correlation with dietary fibre, and the range of the steryl glycoside contents was much narrower than that of steryl ferulates in both cereals. There were significant differences in the sterol compositions of these steryl conjugates when compared with each other or with the total plant sterols in the corresponding fractions. Properties of steryl ferulates and steryl glycosides were evaluated after common processing methods and in enzymatic hydrolysis. Thermal and mechanical processing had only minor or no effects on the contents of steryl conjugates from rye and wheat bran. Enzymatic treatments on the other hand caused some changes, especially in the contents of glycosylated sterols. When steryl ferulates extracted from rye or wheat bran were subjected to enzymatic treatments by steryl esterase, significant differences in the rates of hydrolysis were observed between steryl ferulates from different sources with differing sterol compositions. Further, differences were also observed between enzymes from different sources. Steryl glycosides were shown to be hydrolysed by β-glucosidase (cellobiase) from A. niger, but less with β-glucosidases from other sources. Steryl ferulates showed good antioxidant activity at both moderate and high temperatures. In bulk and emulsion systems of methyl linoleate at 40°C steryl ferulates extracted from rye and wheat bran inhibited hydroperoxide formation much more effectively than synthetic steryl ferulates or those extracted from rice (γ-oryzanol), demonstrating that the sterol composition has an effect on the activity. At cooking (100°C) and frying temperatures (180°C) sitostanyl ferulate was shown to inhibit polymer formation significantly and, especially at 100°C, comparably to α-tocopherol. The rate of antioxidant degradation was slower for sitostanyl ferulate, showing higher heat stability than α-tocopherol. When evaluated as a mixture, no synergistic effect was observed between these two antioxidants. The data presented in this thesis provides information that may henceforth be applied when evaluating the intakes of steryl conjugates from cereal sources, as well as their possible influences as minor bioactive components. Wheat and rye both are good sources of steryl ferulates and steryl glycosides and, especially with steryl ferulates, what may be lost out to some other cereals on quantity is compensated with quality of the sterol composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report here the structures and properties of heat-stable, non-protein, and mammalian cell-toxic compounds produced by spore-forming bacilli isolated from indoor air of buildings and from food. Little information is available on the effects and occurrence of heat-stable non-protein toxins produced by bacilli in moisture-damaged buildings. Bacilli emit spores that move in the air and can serve as the carriers of toxins, in a manner similar to that of the spores of toxic fungi found in contaminated indoor air. Bacillus spores in food cause problems because they tolerate the temperatures applied in food manufacture and the spores later initiate growth when food storage conditions are more favorable. Detection of the toxic compounds in Bacillus is based on using the change in mobility of boar spermatozoa as an indicator of toxic exposure. GC, LC, MS, and nuclear magnetic resonance NMR spectroscopy were used for purification, detection, quantitation, and analysis of the properties and structures of the compounds. Toxicity and the mechanisms of toxicity of the compounds were studied using boar spermatozoa, feline lung cells, human neural cells, and mitochondria isolated from rat liver. The ionophoric properties were studied using the BLM (black-lipid membrane) method. One novel toxin, forming ion channels permeant to K+ > Na+ > Ca2+, was found and named amylosin. It is produced by B. amyloliquefaciens isolated from indoor air of moisture-damaged buildings. Amylosin was purified with an RP-HPLC and a monoisotopic mass of 1197 Da was determined with ESI-IT-MS. Furthermore, acid hydrolysis of amylosin followed by analysis of the amino acids with the GS-MS showed that it was a peptide. The presence of a chromophoric polyene group was found using a NMR spectroscopy. The quantification method developed for amylosin based on RP-HPLC-UV, using the macrolactone polyene, amphotericin B (MW 924), as a reference compound. The B. licheniformis strains isolated from a food poisoning case produced a lipopeptide, lichenysin A, that ruptured mammalian cell membranes and was purified with a LC. Lichenysin A was identified by its protonated molecules and sodium- and potassium- cationized molecules with MALDI-TOF-MS. Its protonated forms were observed at m/z 1007, 1021 and 1035. The amino acids of lichenysin A were analyzed with ESI-TQ-MS/MS and, after acid hydrolysis, the stereoisomeric forms of the amino acids with RP-HPLC. The indoor air isolates of the strain of B. amyloliquefaciens produced not only amylosin but also lipopeptides: the cell membrane-damaging surfactin and the fungicidal fengycin. They were identified with ESI-IT-MS observing their protonated molecules, the sodium- and potassium-cationized molecules and analysing the MS/MS spectra. The protonated molecules of surfactin and fengycin showed m/z values of 1009, 1023, and 1037 and 1450, 1463, 1493, and 1506, respectively. Cereulide (MW 1152) was purified with RP-HPLC from a food poisoning strain of B. cereus. Cereulide was identified with ESI-TQ-MS according to the protonated molecule observed at m/z 1154 and the ammonium-, sodium- and potassium-cationized molecules observed at m/z 1171, 1176, and 1192, respectively. The fragment ions of the MS/MS spectrum obtained from the protonated molecule of cereulide at m/z 1154 were also interpreted. We developed a quantification method for cereulide, using RP-HPLC-UV and valinomycin (MW 1110, which structurally resembles cereulide) as the reference compound. Furthermore, we showed empirically, using the BLM method, that the emetic toxin cereulide is a specific and effective potassium ionophore of whose toxicity target is especially the mitochondria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When genome sections of wild Solanum species are bred into the cultivated potato (S. tuberosum L.) to obtain improved potato cultivars, the new cultivars must be evaluated for their beneficial and undesirable traits. Glycoalkaloids present in Solanum species are known for their toxic as well as for beneficial effects on mammals. On the other hand, glycoalkaloids in potato leaves provide natural protection against pests. Due to breeding, glycoalkaloid profile of the plant is affected. In addition, the starch properties in potato tubers can be affected as a result of breeding, because the crystalline properties are determined by the botanical source of the starch. Starch content and composition affect the texture of cooked and processed potatoes. In order to determine glycoalkaloid contents in Solanum species, simultaneous separation of glycoalkaloids and aglycones using reversed-phase high-performance liquid chromatography (HPLC) was developed. Clean-up of foliage samples was improved using a silica-based strong cation exchanger instead of octadecyl phases in solid-phase extraction. Glycoalkaloids alpha-solanine and alpha-chaconine were detected in potato tubers of cvs. Satu and Sini. The total glycoalkaloid concentration of non-peeled and immature tubers was at an acceptable level (under 20 mg/100 g of FW) in the cv. Satu, whereas concentration in cv. Sini was 23 mg/100 g FW. Solanum species (S. tuberosum, S. brevidens, S. acaule, and S. commersonii) and interspecific somatic hybrids (brd + tbr, acl + tbr, cmm + tbr) were analyzed for their glycoalkaloid contents using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). The concentrations in the tubers of the brd + tbr and acl + tbr hybrids remained under 20 mg/100 g FW. Glycoalkaloid concentration in the foliage of the Solanum species was between 110 mg and 890 mg/100 g FW. However, the concentration in the foliage of S. acaule was as low as 26 mg/100 g FW. The total concentrations of brd + tbr, acl + tbr, and cmm + tbr hybrid foliages were 88 mg, 180 mg, and 685 mg/100 g FW, respectively. Glycoalkaloids of both parental plants as well as new combinations of aglycones and saccharides were detected in somatic hybrids. The hybrids contained mainly spirosolanes, and glycoalkaloid structures having no 5,6-double bond in the aglycone. Based on these results, the glycoalkaloid profiles of the hybrids may represent a safer and more beneficial spectrum of glycoalkaloids than that found in currently cultivated varieties. Starch nanostructure of three different cultivars (Satu, Saturna, and Lady Rosetta), a wild species S. acaule, and interspecific somatic hybrids were examined by wide-angle and small-angle X-ray scattering (WAXS, SAXS). For the first time, the measurements were conducted on fresh potato tuber samples. Crystallinity of starch, average crystallite size, and lamellar distance were determined from the X-ray patterns. No differences in the starch nanostructure between the three different cultivars were detected. However, tuber immaturity was detected by X-ray scattering methods when large numbers of immature and mature samples were measured and the results were compared. The present study shows that no significant changes occurred in the nanostructures of starches resulting from hybridizations of potato cultivars.