Place Identification : A Comparative Study


Autoria(s): Bhattacharya, Sourav
Contribuinte(s)

Helsingin yliopisto, matemaattis-luonnontieteellinen tiedekunta, tietojenkäsittelytieteen laitos

Helsingfors universitet, matematisk-naturvetenskapliga fakulteten, institutionen för datavetenskap

University of Helsinki, Faculty of Science, Department of Computer Science

Data(s)

02/11/2009

Resumo

Place identification is the methodology of automatically detecting spatial regions or places that are meaningful to a user by analysing her location traces. Following this approach several algorithms have been proposed in the literature. Most of the algorithms perform well on a particular data set with suitable choice of parameter values. However, tuneable parameters make it difficult for an algorithm to generalise to data sets collected from different geographical locations, different periods of time or containing different activities. This thesis compares the generalisation performance of our proposed DPCluster algorithm along with six state-of-the-art place identification algorithms on twelve location data sets collected using Global Positioning System (GPS). Spatial and temporal variations present in the data help us to identify strengths and weaknesses of the place identification algorithms under study. We begin by discussing the notion of a place and its importance in location-aware computing. Next, we discuss different phases of the place identification process found in the literature followed by a thorough description of seven algorithms. After that, we define evaluation metrics and compare generalisation performance of individual place identification algorithms and report the results. The results indicate that the DPCluster algorithm performs superior to all other algorithms in terms of generalisation performance.

Identificador

URN:NBN:fi-fe201002091353

http://hdl.handle.net/10138/21438

Idioma(s)

en

Publicador

Helsingin yliopisto

Helsingfors universitet

University of Helsinki

Direitos

Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

Publikationen är skyddad av upphovsrätten. Den får läsas och skrivas ut för personligt bruk. Användning i kommersiellt syfte är förbjuden.

Tipo

Pro gradu

Master's thesis

Pro gradu

Text