29 resultados para CONFIGURATION
em Helda - Digital Repository of University of Helsinki
Resumo:
This study investigated questions related to half-occlusion processing in human stereoscopic vision: (1) How does the depth location of a half-occluding figure affect the depth localization of adjacent monocular objects? (2) Is three-dimensional slant around vertical axis (geometric effect) affected by half-occlusion constraints? and (3) How the half-occlusion constraints and surface formation processes are manifested in stereoscopic capture? Our results showed that the depth localization of binocular objects affects the depth localization of discrete monocular objects. We also showed that the visual system has a preference for a frontoparallel surface interpretation if the half-occlusion configuration allows multiple interpretation alternatives. When the surface formation was constrained by textures, our results showed that a process of rematching spreading determines the resulting perception and that the spreading can be limited by illusory contours that support the presence of binocularly unmatched figures. The unmatched figures could be present, if the inducing figures producing the illusory surface contained binocular image differences that provided cues for quantitative da Vinci stereopsis. These findings provide evidence of the significant role of half-occlusions in stereoscopic processing.
Resumo:
The visual systems of humans and animals represent physical reality in a modified way, depending on the specific demands that the species in question has for survival. The ability to perceive visual illusions is found in independently evolved visual systems, from honeybees to humans. In humans, the ability emerges early, at the age of four months. Thus the perception of illusion is likely to reflect visual processes of fundamental importance for object perception in natural vision. The experiments reported in this thesis employed various modifications of the Kanizsa triangle, a drawn configuration composed of three black disks with missing sectors on a white background. The sectors appear to form the tips of a triangle. The visual system completes the physically empty area between the disks, generally called inducers, with giving the perception of an illusory triangle. The illusory triangle consists of an illusory surface bounded by illusory contours; the triangle appears brighter than and to lie above the background. If the sectors are coloured, the colour fills the illusory area, a phenomenon known as neon colour spreading . We investigated spatial limitations on the perception of Kanizsa-type illusions and how other stimuli and viewing parameters affected these limitations. We also studied complex configurations thick, bent, mobile and chromatic inducers - to determine whether illusions combining several attributes can be perceived. The results suggest that the visual system is highly effective in completing a percept. The perception of an illusory figure is spatially scale invariant when perceived at threshold. The processing time and the number of fixations modify the percept, making the perception of the illusion more probable in various viewing conditions. Furthermore, the fact that the illusion can be perceived when only one inducer is physically present at any given moment indicates the potential of single inducers. Apparently, modelling illusory figure perception will require a combination of low-level, local processes and higher-level integrative processes. Our studies with stimuli combining several attributes relevant to object perception demonstrate that the perception of an illusory figure is flexible and is maintained also when it contains colour and volume and when shown in movement. All in all, the results confirm the assumed importance of the visual processes related with the perception of illusory figures in everyday viewing. This is indicated by the variety of inducer modifications that can be made without destroying the percept. Furthermore, the illusion can acquire additional attributes from such modifications. Due to individual differences in the perception of illusory figures, universal values for absolute performance are not always meaningful, but stable trends and general relations do exist.
Resumo:
The neural basis of visual perception can be understood only when the sequence of cortical activity underlying successful recognition is known. The early steps in this processing chain, from retina to the primary visual cortex, are highly local, and the perception of more complex shapes requires integration of the local information. In Study I of this thesis, the progression from local to global visual analysis was assessed by recording cortical magnetoencephalographic (MEG) responses to arrays of elements that either did or did not form global contours. The results demonstrated two spatially and temporally distinct stages of processing: The first, emerging 70 ms after stimulus onset around the calcarine sulcus, was sensitive to local features only, whereas the second, starting at 130 ms across the occipital and posterior parietal cortices, reflected the global configuration. To explore the links between cortical activity and visual recognition, Studies II III presented subjects with recognition tasks of varying levels of difficulty. The occipito-temporal responses from 150 ms onwards were closely linked to recognition performance, in contrast to the 100-ms mid-occipital responses. The averaged responses increased gradually as a function of recognition performance, and further analysis (Study III) showed the single response strengths to be graded as well. Study IV addressed the attention dependence of the different processing stages: Occipito-temporal responses peaking around 150 ms depended on the content of the visual field (faces vs. houses), whereas the later and more sustained activity was strongly modulated by the observers attention. Hemodynamic responses paralleled the pattern of the more sustained electrophysiological responses. Study V assessed the temporal processing capacity of the human object recognition system. Above sufficient luminance, contrast and size of the object, the processing speed was not limited by such low-level factors. Taken together, these studies demonstrate several distinct stages in the cortical activation sequence underlying the object recognition chain, reflecting the level of feature integration, difficulty of recognition, and direction of attention.
Resumo:
This study examines boundaries in health care organizations. Boundaries are sometimes considered things to be avoided in everyday living. This study suggests that boundaries can be important temporally and spatially emerging locations of development, learning, and change in inter-organizational activity. Boundaries can act as mediators of cultural and social formations and practices. The data of the study was gathered in an intervention project during the years 2000-2002 in Helsinki in which the care of 26 patients with multiple and chronic illnesses was improved. The project used the Change Laboratory method that represents a research assisted method for developing work. The research questions of the study are: (1) What are the boundary dynamics of development, learning, and change in health care for patients with multiple and chronic illnesses? (2) How do individual patients experience boundaries in their health care? (3) How are the boundaries of health care constructed and reconstructed in social interaction? (4) What are the dynamics of boundary crossing in the experimentation with the new tools and new practice? The methodology of the study, the ethnography of the multi-organizational field of activity, draws on cultural-historical activity theory and anthropological methods. The ethnographic fieldwork involves multiple research techniques and a collaborative strategy for raising research data. The data of this study consists of observations, interviews, transcribed intervention sessions, and patients' health documents. According to the findings, the care of patients with multiple and chronic illnesses emerges as fragmented by divisions of a patient and professionals, specialties of medicine and levels of health care organization. These boundaries have a historical origin in the Finnish health care system. As an implication of these boundaries, patients frequently experience uncertainty and neglect in their care. However, the boundaries of a single patient were transformed in the Change Laboratory discussions among patients, professionals and researchers. In these discussions, the questioning of the prevailing boundaries was triggered by the observation of gaps in inter-organizational care. Transformation of the prevailing boundaries was achieved in implementation of the collaborative care agreement tool and the practice of negotiated care. However, the new tool and practice did not expand into general use during the project. The study identifies two complementary models for the development of health care organization in Finland. The 'care package model', which is based on productivity and process models adopted from engineering and the 'model of negotiated care', which is based on co-configuration and the public good.
Resumo:
The earliest stages of human cortical visual processing can be conceived as extraction of local stimulus features. However, more complex visual functions, such as object recognition, require integration of multiple features. Recently, neural processes underlying feature integration in the visual system have been under intensive study. A specialized mid-level stage preceding the object recognition stage has been proposed to account for the processing of contours, surfaces and shapes as well as configuration. This thesis consists of four experimental, psychophysical studies on human visual feature integration. In two studies, classification image a recently developed psychophysical reverse correlation method was used. In this method visual noise is added to near-threshold stimuli. By investigating the relationship between random features in the noise and observer s perceptual decision in each trial, it is possible to estimate what features of the stimuli are critical for the task. The method allows visualizing the critical features that are used in a psychophysical task directly as a spatial correlation map, yielding an effective "behavioral receptive field". Visual context is known to modulate the perception of stimulus features. Some of these interactions are quite complex, and it is not known whether they reflect early or late stages of perceptual processing. The first study investigated the mechanisms of collinear facilitation, where nearby collinear Gabor flankers increase the detectability of a central Gabor. The behavioral receptive field of the mechanism mediating the detection of the central Gabor stimulus was measured by the classification image method. The results show that collinear flankers increase the extent of the behavioral receptive field for the central Gabor, in the direction of the flankers. The increased sensitivity at the ends of the receptive field suggests a low-level explanation for the facilitation. The second study investigated how visual features are integrated into percepts of surface brightness. A novel variant of the classification image method with brightness matching task was used. Many theories assume that perceived brightness is based on the analysis of luminance border features. Here, for the first time this assumption was directly tested. The classification images show that the perceived brightness of both an illusory Craik-O Brien-Cornsweet stimulus and a real uniform step stimulus depends solely on the border. Moreover, the spatial tuning of the features remains almost constant when the stimulus size is changed, suggesting that brightness perception is based on the output of a single spatial frequency channel. The third and fourth studies investigated global form integration in random-dot Glass patterns. In these patterns, a global form can be immediately perceived, if even a small proportion of random dots are paired to dipoles according to a geometrical rule. In the third study the discrimination of orientation structure in highly coherent concentric and Cartesian (straight) Glass patterns was measured. The results showed that the global form was more efficiently discriminated in concentric patterns. The fourth study investigated how form detectability depends on the global regularity of the Glass pattern. The local structure was either Cartesian or curved. It was shown that randomizing the local orientation deteriorated the performance only with the curved pattern. The results give support for the idea that curved and Cartesian patterns are processed in at least partially separate neural systems.
Resumo:
Buffer zones are vegetated strip-edges of agricultural fields along watercourses. As linear habitats in agricultural ecosystems, buffer strips dominate and play a leading ecological role in many areas. This thesis focuses on the plant species diversity of the buffer zones in a Finnish agricultural landscape. The main objective of the present study is to identify the determinants of floral species diversity in arable buffer zones from local to regional levels. This study was conducted in a watershed area of a farmland landscape of southern Finland. The study area, Lepsämänjoki, is situated in the Nurmijärvi commune 30 km to the north of Helsinki, Finland. The biotope mosaics were mapped in GIS. A total of 59 buffer zones were surveyed, of which 29 buffer strips surveyed were also sampled by plot. Firstly, two diversity components (species richness and evenness) were investigated to determine whether the relationship between the two is equal and predictable. I found no correlation between species richness and evenness. The relationship between richness and evenness is unpredictable in a small-scale human-shaped ecosystem. Ordination and correlation analyses show that richness and evenness may result from different ecological processes, and thus should be considered separately. Species richness correlated negatively with phosphorus content, and species evenness correlated negatively with the ratio of organic carbon to total nitrogen in soil. The lack of a consistent pattern in the relationship between these two components may be due to site-specific variation in resource utilization by plant species. Within-habitat configuration (width, length, and area) were investigated to determine which is more effective for predicting species richness. More species per unit area increment could be obtained from widening the buffer strip than from lengthening it. The width of the strips is an effective determinant of plant species richness. The increase in species diversity with an increase in the width of buffer strips may be due to cross-sectional habitat gradients within the linear patches. This result can serve as a reference for policy makers, and has application value in agricultural management. In the framework of metacommunity theory, I found that both mass effect(connectivity) and species sorting (resource heterogeneity) were likely to explain species composition and diversity on a local and regional scale. The local and regional processes were interactively dominated by the degree to which dispersal perturbs local communities. In the lowly and intermediately connected regions, species sorting was of primary importance to explain species diversity, while the mass effect surpassed species sorting in the highly connected region. Increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities, and consequently, to lower regional diversity, while local species richness was unrelated to the habitat connectivity. Of all species found, Anthriscus sylvestris, Phalaris arundinacea, and Phleum pretense significantly responded to connectivity, and showed high abundance in the highly connected region. We suggest that these species may play a role in switching the force from local resources to regional connectivity shaping the community structure. On the landscape context level, the different responses of local species richness and evenness to landscape context were investigated. Seven landscape structural parameters served to indicate landscape context on five scales. On all scales but the smallest scales, the Shannon-Wiener diversity of land covers (H') correlated positively with the local richness. The factor (H') showed the highest correlation coefficients in species richness on the second largest scale. The edge density of arable field was the only predictor that correlated with species evenness on all scales, which showed the highest predictive power on the second smallest scale. The different predictive power of the factors on different scales showed a scaledependent relationship between the landscape context and local plant species diversity, and indicated that different ecological processes determine species richness and evenness. The local richness of species depends on a regional process on large scales, which may relate to the regional species pool, while species evenness depends on a fine- or coarse-grained farming system, which may relate to the patch quality of the habitats of field edges near the buffer strips. My results suggested some guidelines of species diversity conservation in the agricultural ecosystem. To maintain a high level of species diversity in the strips, a high level of phosphorus in strip soil should be avoided. Widening the strips is the most effective mean to improve species richness. Habitat connectivity is not always favorable to species diversity because increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities (beta diversity) and, consequently, to lower regional diversity. Overall, a synthesis of local and regional factors emerged as the model that best explain variations in plant species diversity. The studies also suggest that the effects of determinants on species diversity have a complex relationship with scale.
Resumo:
World marine fisheries suffer from economic and biological overfishing: too many vessels are harvesting too few fish stocks. Fisheries economics has explained the causes of overfishing and provided a theoretical background for management systems capable of solving the problem. Yet only a few examples of fisheries managed by the principles of the bioeconomic theory exist. With the aim of bridging the gap between the actual fish stock assessment models used to provide management advice and economic optimisation models, the thesis explores economically sound harvesting from national and international perspectives. Using data calibrated for the Baltic salmon and herring stocks, optimal harvesting policies are outlined using numerical methods. First, the thesis focuses on the socially optimal harvest of a single salmon stock by commercial and recreational fisheries. The results obtained using dynamic programming show that the optimal fishery configuration would be to close down three out of the five studied fisheries. The result is robust to stock size fluctuations. Compared to a base case situation, the optimal fleet structure would yield a slight decrease in the commercial catch, but a recreational catch that is nearly seven times higher. As a result, the expected economic net benefits from the fishery would increase nearly 60%, and the expected number of juvenile salmon (smolt) would increase by 30%. Second, the thesis explores the management of multiple salmon stocks in an international framework. Non-cooperative and cooperative game theory are used to demonstrate different "what if" scenarios. The results of the four player game suggest that, despite the commonly agreed fishing quota, the behaviour of the countries has been closer to non-cooperation than cooperation. Cooperation would more than double the net benefits from the fishery compared to a past fisheries policy. Side payments, however, are a prerequisite for a cooperative solution. Third, the thesis applies coalitional games in the partition function form to study whether the cooperative solution would be stable despite the potential presence of positive externalities. The results show that the cooperation of two out of four studied countries can be stable. Compared to a past fisheries policy, a stable coalition structure would provide substantial economic benefits. Nevertheless, the status of the salmon stocks would not improve significantly. Fourth, the thesis studies the prerequisites for and potential consequences of the implementation of an individual transferable quota (ITQ) system in the Finnish herring fishery. Simulation results suggest that ITQs would result in a decrease in the number of fishing vessels, but enables positive profits to overlap with a higher stock size. The empirical findings of the thesis affirm that the profitability of the studied fisheries could be improved. The evidence, however, indicates that incentives for free riding exist, and thus the most preferable outcome both in economic and biological terms is elusive.
Resumo:
The literature part of the thesis mainly reviews the results of the use of titanium catalysts for ethene and caprolactone polymerisation. The behaviour of titanium catalysts bearing phenoxy-imino ligands has been the focus of more detailed investigations in ethene polymerisation. Reasons for the production of multimodal polyethene for a range of catalysts are also given. The experimental part of the thesis is divided into two sections based on the monomers used in the polymerisations: Part A (ethene) and part B (caprolactone). Part A: Titanium(IV) complexes bearing phenoxy-imino ligands are known to possess high ethene polymerisation activities after MAO activation. Depending on the ligand, the activities of the catalysts in polymerisation can vary between 1 and 44000 kgPE/(mol*cat*h*bar). Depending on the polymerisation temperature and the electronic and steric properties of the catalyst ligands, low to high molar mass values and uni- and multimodal polydispersity values can been observed. In order to discover the reasons for these differences, 22 titanium(IV) complexes containing differently substituted phenoxy-imino derivatives as di- and tetradentate ligands were synthesised with high yields and used as homogeneous catalysts in ethene polymerisations. Computational methods were used to predict the geometry of the synthesised complexes and their configuration after activation. Based on the results obtained, the geometry of the catalyst together with the ligand substituents seem to play a major role in defining the catalytic activity. Novel titanium(IV) complexes bearing malonate ligands were also synthesised. Malonates are considered to be suitable ligand pre-cursors since they can be produced by the simple reaction of any primary or secondary alcohol with malonylchloride, and thus they are easily modifiable. After treatment with MAO these complexes had polymerisation activities between 10 and 50 kgPE/(mol*cat*h*bar) and surprisingly low polydispersity values when compared with similar types of catalysts bearing the O?O chelate ligand. Part B: One of the synthesis routes in the preparation of the above mentioned phenoxy-imino titanium dichloride complexes involved the use of Ti(NMe2)4 with a range of salicylaldimine type compounds. On reaction, these two compounds formed an intermediate product selectively and quantitatively which was active in the ring-opening polymerisation of caprolactone. Several mono-anionic alcoholates were also combined with Ti(NMe2)4 in different molar ratios and used as catalysts. Full conversion of the monomer was achieved within 15 minutes with catalysts having a co-ordination number of 4 while after 22 hours full conversion was achieved with catalysts having a co-ordination number of 6.
Resumo:
Recent epidemiological studies have shown a consistent association of the mass concentration of urban air thoracic (PM10) and fine (PM2.5) particles with mortality and morbidity among cardiorespiratory patients. However, the chemical characteristics of different particulate size ranges and the biological mechanisms responsible for these adverse health effects are not well known. The principal aims of this thesis were to validate a high volume cascade impactor (HVCI) for the collection of particulate matter for physicochemical and toxicological studies, and to make an in-depth chemical and source characterisation of samples collected during different pollution situations. The particulate samples were collected with the HVCI, virtual impactors and a Berner low pressure impactor in six European cities: Helsinki, Duisburg, Prague, Amsterdam, Barcelona and Athens. The samples were analysed for particle mass, common ions, total and water-soluble elements as well as elemental and organic carbon. Laboratory calibration and field comparisons indicated that the HVCI can provide a unique large capacity, high efficiency sampling of size-segregated aerosol particles. The cutoff sizes of the recommended HVCI configuration were 2.4, 0.9 and 0.2 μm. The HVCI mass concentrations were in a good agreement with the reference methods, but the chemical composition of especially the fine particulate samples showed some differences. This implies that the chemical characterization of the exposure variable in toxicological studies needs to be done from the same HVCI samples as used in cell and animal studies. The data from parallel, low volume reference samplers provide valuable additional information for chemical mass closure and source assessment. The major components of PM2.5 in the virtual impactor samples were carbonaceous compounds, secondary inorganic ions and sea salt, whereas those of coarse particles (PM2.5-10) were soil-derived compounds, carbonaceous compounds, sea salt and nitrate. The major and minor components together accounted for 77-106% and 77-96% of the gravimetrically-measured masses of fine and coarse particles, respectively. Relatively large differences between sampling campaigns were observed in the organic carbon content of the PM2.5 samples as well as the mineral composition of the PM2.5-10 samples. A source assessment based on chemical tracers suggested clear differences in the dominant sources (e.g. traffic, residential heating with solid fuels, metal industry plants, regional or long-range transport) between the sampling campaigns. In summary, the field campaigns exhibited different profiles with regard to particulate sources, size distribution and chemical composition, thus, providing a highly useful setup for toxicological studies on the size-segregated HVCI samples.
Resumo:
This thesis contains five experimental spectroscopic studies that probe the vibration-rotation energy level structure of acetylene and some of its isotopologues. The emphasis is on the development of laser spectroscopic methods for high-resolution molecular spectroscopy. Three of the experiments use cavity ringdown spectroscopy. One is a standard setup that employs a non-frequency stabilised continuous wave laser as a source. In the other two experiments, the same laser is actively frequency stabilised to the ringdown cavity. This development allows for increased repetition rate of the experimental signal and thus the spectroscopic sensitivity of the method is improved. These setups are applied to the recording of several vibration-rotation overtone bands of both H(12)C(12)CH and H(13)C(13)CH. An intra-cavity laser absorption spectroscopy setup that uses a commercial continuous wave ring laser and a Fourier transform interferometer is presented. The configuration of the laser is found to be sub-optimal for high-sensitivity work but the spectroscopic results are good and show the viability of this type of approach. Several ro-vibrational bands of carbon-13 substituted acetylenes are recorded and analysed. Compared with earlier work, the signal-to-noise ratio of a laser-induced dispersed infrared fluorescence experiment is enhanced by more than one order of magnitude by exploiting the geometric characteristics of the setup. The higher sensitivity of the spectrometer leads to the observation of two new symmetric vibrational states of H(12)C(12)CH. The precision of the spectroscopic parameters of some previously published symmetric states is also improved. An interesting collisional energy transfer process is observed for the excited vibrational states and this phenomenon is explained by a simple step-down model.
Resumo:
This thesis which consists of an introduction and four peer-reviewed original publications studies the problems of haplotype inference (haplotyping) and local alignment significance. The problems studied here belong to the broad area of bioinformatics and computational biology. The presented solutions are computationally fast and accurate, which makes them practical in high-throughput sequence data analysis. Haplotype inference is a computational problem where the goal is to estimate haplotypes from a sample of genotypes as accurately as possible. This problem is important as the direct measurement of haplotypes is difficult, whereas the genotypes are easier to quantify. Haplotypes are the key-players when studying for example the genetic causes of diseases. In this thesis, three methods are presented for the haplotype inference problem referred to as HaploParser, HIT, and BACH. HaploParser is based on a combinatorial mosaic model and hierarchical parsing that together mimic recombinations and point-mutations in a biologically plausible way. In this mosaic model, the current population is assumed to be evolved from a small founder population. Thus, the haplotypes of the current population are recombinations of the (implicit) founder haplotypes with some point--mutations. HIT (Haplotype Inference Technique) uses a hidden Markov model for haplotypes and efficient algorithms are presented to learn this model from genotype data. The model structure of HIT is analogous to the mosaic model of HaploParser with founder haplotypes. Therefore, it can be seen as a probabilistic model of recombinations and point-mutations. BACH (Bayesian Context-based Haplotyping) utilizes a context tree weighting algorithm to efficiently sum over all variable-length Markov chains to evaluate the posterior probability of a haplotype configuration. Algorithms are presented that find haplotype configurations with high posterior probability. BACH is the most accurate method presented in this thesis and has comparable performance to the best available software for haplotype inference. Local alignment significance is a computational problem where one is interested in whether the local similarities in two sequences are due to the fact that the sequences are related or just by chance. Similarity of sequences is measured by their best local alignment score and from that, a p-value is computed. This p-value is the probability of picking two sequences from the null model that have as good or better best local alignment score. Local alignment significance is used routinely for example in homology searches. In this thesis, a general framework is sketched that allows one to compute a tight upper bound for the p-value of a local pairwise alignment score. Unlike the previous methods, the presented framework is not affeced by so-called edge-effects and can handle gaps (deletions and insertions) without troublesome sampling and curve fitting.
Resumo:
Environmental variation is a fact of life for all the species on earth: for any population of any particular species, the local environmental conditions are liable to vary in both time and space. In today's world, anthropogenic activity is causing habitat loss and fragmentation for many species, which may profoundly alter the characteristics of environmental variation in remaining habitat. Previous research indicates that, as habitat is lost, the spatial configuration of remaining habitat will increasingly affect the dynamics by which populations are governed. Through the use of mathematical models, this thesis asks how environmental variation interacts with species properties to influence population dynamics, local adaptation, and dispersal evolution. More specifically, we couple continuous-time continuous-space stochastic population dynamic models to landscape models. We manipulate environmental variation via parameters such as mean patch size, patch density, and patch longevity. Among other findings, we show that a mixture of high and low quality habitat is commonly better for a population than uniformly mediocre habitat. This conclusion is justified by purely ecological arguments, yet the positive effects of landscape heterogeneity may be enhanced further by local adaptation, and by the evolution of short-ranged dispersal. The predicted evolutionary responses to environmental variation are complex, however, since they involve numerous conflicting factors. We discuss why the species that have high levels of local adaptation within their ranges may not be the same species that benefit from local adaptation during range expansion. We show how habitat loss can lead to either increased or decreased selection for dispersal depending on the type of habitat and the manner in which it is lost. To study the models, we develop a recent analytical method, Perturbation expansion, to enable the incorporation of environmental variation. Within this context, we use two methods to address evolutionary dynamics: Adaptive dynamics, which assumes mutations occur infrequently so that the ecological and evolutionary timescales can be separated, and via Genotype distributions, which assume mutations are more frequent. The two approaches generally lead to similar predictions yet, exceptionally, we show how the evolutionary response of dispersal behaviour to habitat turnover may qualitatively depend on the mutation rate.
Resumo:
Ongoing habitat loss and fragmentation threaten much of the biodiversity that we know today. As such, conservation efforts are required if we want to protect biodiversity. Conservation budgets are typically tight, making the cost-effective selection of protected areas difficult. Therefore, reserve design methods have been developed to identify sets of sites, that together represent the species of conservation interest in a cost-effective manner. To be able to select reserve networks, data on species distributions is needed. Such data is often incomplete, but species habitat distribution models (SHDMs) can be used to link the occurrence of the species at the surveyed sites to the environmental conditions at these locations (e.g. climatic, vegetation and soil conditions). The probability of the species occurring at unvisited location is next predicted by the model, based on the environmental conditions of those sites. The spatial configuration of reserve networks is important, because habitat loss around reserves can influence the persistence of species inside the network. Since species differ in their requirements for network configuration, the spatial cohesion of networks needs to be species-specific. A way to account for species-specific requirements is to use spatial variables in SHDMs. Spatial SHDMs allow the evaluation of the effect of reserve network configuration on the probability of occurrence of the species inside the network. Even though reserves are important for conservation, they are not the only option available to conservation planners. To enhance or maintain habitat quality, restoration or maintenance measures are sometimes required. As a result, the number of conservation options per site increases. Currently available reserve selection tools do however not offer the ability to handle multiple, alternative options per site. This thesis extends the existing methodology for reserve design, by offering methods to identify cost-effective conservation planning solutions when multiple, alternative conservation options are available per site. Although restoration and maintenance measures are beneficial to certain species, they can be harmful to other species with different requirements. This introduces trade-offs between species when identifying which conservation action is best applied to which site. The thesis describes how the strength of such trade-offs can be identified, which is useful for assessing consequences of conservation decisions regarding species priorities and budget. Furthermore, the results of the thesis indicate that spatial SHDMs can be successfully used to account for species-specific requirements for spatial cohesion - in the reserve selection (single-option) context as well as in the multi-option context. Accounting for the spatial requirements of multiple species and allowing for several conservation options is however complicated, due to trade-offs in species requirements. It is also shown that spatial SHDMs can be successfully used for gaining information on factors that drive a species spatial distribution. Such information is valuable to conservation planning, as better knowledge on species requirements facilitates the design of networks for species persistence. This methods and results described in this thesis aim to improve species probabilities of persistence, by taking better account of species habitat and spatial requirements. Many real-world conservation planning problems are characterised by a variety of conservation options related to protection, restoration and maintenance of habitat. Planning tools therefore need to be able to incorporate multiple conservation options per site, in order to continue the search for cost-effective conservation planning solutions. Simultaneously, the spatial requirements of species need to be considered. The methods described in this thesis offer a starting point for combining these two relevant aspects of conservation planning.
Resumo:
Sormen koukistajajännevamman korjauksen jälkeisen aktiivisen mobilisaation on todettu johtavan parempaan toiminnalliseen lopputulokseen kuin nykyisin yleisesti käytetyn dynaamisen mobilisaation. Aktiivisen mobilisaation ongelma on jännekorjauksen pettämisriskin lisääntyminen nykyisten ommeltekniikoiden riittämättömän vahvuuden vuoksi. Jännekorjauksen lujuutta on parannettu kehittämällä monisäieommeltekniikoita, joissa jänteeseen tehdään useita rinnakkaisia ydinompeleita. Niiden kliinistä käyttöä rajoittaa kuitenkin monimutkainen ja aikaa vievä tekninen suoritus. Käden koukistajajännekorjauksessa käytetään yleisesti sulamattomia ommelmateriaaleja. Nykyiset käytössä olevat biohajoavat langat heikkenevät liian nopeasti jänteen paranemiseen nähden. Biohajoavan laktidistereokopolymeeri (PLDLA) 96/4 – langan vetolujuuden puoliintumisajan sekä kudosominaisuuksien on aiemmin todettu soveltuvan koukistajajännekorjaukseen. Tutkimuksen tavoitteena oli kehittää välittömän aktiivisen mobilisaation kestävä ja toteutukseltaan yksinkertainen käden koukistajajännekorjausmenetelmä biohajoavaa PLDLA 96/4 –materiaalia käyttäen. Tutkimuksessa analysoitiin viiden eri yleisesti käytetyn koukistajajänneompeleen biomekaanisia ominaisuuksia staattisessa vetolujuustestauksessa ydinompeleen rakenteellisten ominaisuuksien – 1) säikeiden (lankojen) lukumäärän, 2) langan paksuuden ja 3) ompeleen konfiguraation – vaikutuksen selvittämiseksi jännekorjauksen pettämiseen ja vahvuuteen. Jännekorjausten näkyvän avautumisen todettiin alkavan perifeerisen ompeleen pettäessä voima-venymäkäyrän myötöpisteessä. Ydinompeleen lankojen lukumäärän lisääminen paransi ompeleen pitokykyä jänteessä ja suurensi korjauksen myötövoimaa. Sen sijaan paksumman (vahvemman) langan käyttäminen tai ompeleen konfiguraatio eivät vaikuttaneet myötövoimaan. Tulosten perusteella tutkittiin mahdollisuuksia lisätä ompeleen pitokykyä jänteestä yksinkertaisella monisäieompeleella, jossa ydinommel tehtiin kolmen säikeen polyesterilangalla tai nauhamaisen rakenteen omaavalla kolmen säikeen polyesterilangalla. Nauhamainen rakenne lisäsi merkitsevästi ompeleen pitokykyä jänteessä parantaen myötövoimaa sekä maksimivoimaa. Korjauksen vahvuus ylitti aktiivisen mobilisaation jännekorjaukseen kohdistaman kuormitustason. PLDLA 96/4 –langan soveltuvuutta koukistajajännekorjaukseen selvitettiin tutkimalla langan biomekaanisia ominaisuuksia ja solmujen pito-ominaisuuksia staattisessa vetolujuustestauksessa verrattuna yleisimmin jännekorjauksessa käytettävään punottuun polyesterilankaan (Ticron®). PLDLA –langan todettiin soveltuvan hyvin koukistajajännekorjaukseen, sillä se on polyesterilankaa venymättömämpi ja solmujen pitävyys on parempi. Viimeisessä vaiheessa tutkittiin PLDLA 96/4 –langasta valmistetulla kolmisäikeisellä, nauhamaisella jännekorjausvälineellä tehdyn jännekorjauksen kestävyyttä staattisessa vetolujuustestauksessa sekä syklisessä kuormituksessa, joka simuloi staattista testausta paremmin mobilisaation toistuvaa kuormitusta. PLDLA-korjauksen vahvuus ylitti sekä staattisessa että syklisessä kuormituksessa aktiivisen mobilisaation edellyttämän vahvuuden. Nauhamaista litteää ommelmateriaalia ei aiemmin ole tutkittu tai käytetty käden koukistajajännekorjauksessa. Tässä tutkimuksessa ommelmateriaalin nauhamainen rakenne paransi merkitsevästi jännekorjauksen vahvuutta, minkä arvioidaan johtuvan lisääntyneestä kontaktipinnasta jänteen ja ommelmateriaalin välillä estäen ompeleen läpileikkautumista jänteessä. Tutkimuksessa biohajoavasta PLDLA –materiaalista valmistetulla rakenteeltaan nauhamaisella kolmisäikeisellä langalla tehdyn jännekorjauksen vahvuus saavutti aktiivisen mobilisaation edellyttämän tason. Lisäksi uusi menetelmä on helppokäyttöinen ja sillä vältetään perinteisten monisäieompeleiden tekniseen suoritukseen liittyvät ongelmat.
Resumo:
Boron neutron capture therapy (BNCT) is a form of chemically targeted radiotherapy that utilises the high neutron capture cross-section of boron-10 isotope to achieve a preferential dose increase in the tumour. The BNCT dosimetry poses a special challenge as the radiation dose absorbed by the irradiated tissues consists of several dose different components. Dosimetry is important as the effect of the radiation on the tissue is correlated with the radiation dose. Consistent and reliable radiation dose delivery and dosimetry are thus basic requirements for radiotherapy. The international recommendations for are not directly applicable to BNCT dosimetry. The existing dosimetry guidance for BNCT provides recommendations but also calls for investigating for complementary methods for comparison and improved accuracy. In this thesis the quality assurance and stability measurements of the neutron beam monitors used in dose delivery are presented. The beam monitors were found not to be affected by the presence of a phantom in the beam and that the effect of the reactor core power distribution was less than 1%. The weekly stability test with activation detectors has been generally reproducible within the recommended tolerance value of 2%. An established toolkit for epithermal neutron beams for determination of the dose components is presented and applied in an international dosimetric intercomparison. The measured quantities (neutron flux, fast neutron and photon dose) by the groups in the intercomparison were generally in agreement within the stated uncertainties. However, the uncertainties were large, ranging from 3-30% (1 standard deviation), emphasising the importance of dosimetric intercomparisons if clinical data is to be compared between different centers. Measurements with the Exradin type 2M ionisation chamber have been repeated in the epithermal neutron beam in the same measurement configuration over the course of 10 years. The presented results exclude severe sensitivity changes to thermal neutrons that have been reported for this type of chamber. Microdosimetry and polymer gel dosimetry as complementary methods for epithermal neutron beam dosimetry are studied. For microdosimetry the comparison of results with ionisation chambers and computer simulation showed that the photon dose measured with microdosimetry was lower than with the two other methods. The disagreement was within the uncertainties. For neutron dose the simulation and microdosimetry results agreed within 10% while the ionisation chamber technique gave 10-30% lower neutron dose rates than the two other methods. The response of the BANG-3 gel was found to be linear for both photon and epithermal neutron beam irradiation. The dose distribution normalised to dose maximum measured by MAGIC polymer gel was found to agree well with the simulated result near the dose maximum while the spatial difference between measured and simulated 30% isodose line was more than 1 cm. In both the BANG-3 and MAGIC gel studies, the interpretation of the results was complicated by the presence of high-LET radiation.