87 resultados para Integration, Functional
Resumo:
Microchips for use in biomolecular analysis show a lot of promise for medical diagnostics and biomedical basic research. Among the potential advantages are more sensitive and faster analyses as well as reduced cost and sample consumption. Due to scaling laws, the surface are to volume ratios of microfluidic chips is very high. Because of this, tailoring the surface properties and surface functionalization are very important technical issues for microchip development. This thesis studies two different types of functional surfaces, surfaces for open surface capillary microfluidics and surfaces for surface assisted laser desorption ionization mass spectrometry, and combinations thereof. Open surface capillary microfluidics can be used to transport and control liquid samples on easily accessible open surfaces simply based on surface forces, without any connections to pumps or electrical power sources. Capillary filling of open partially wetting grooves is shown to be possible with certain geometries, aspect ratios and contact angles, and a theoretical model is developed to identify complete channel filling domains, as well as partial filling domains. On the other hand, partially wetting surfaces with triangular microstructures can be used for achieving directional wetting, where the water droplets do not spread isotropically, but instead only spread to a predetermined sector. Furthermore, by patterning completely wetting and superhydrophobic areas on the same surface, complex droplet shapes are achieved, as the water stretches to make contact with the wetting surface, but does not enter into the superhydrophobic domains. Surfaces for surface assisted laser desorption ionization mass spectrometry are developed by applying various active thin film coatings on multiple substrates, in order to separate surface and bulk effects. Clear differences are observed between both surface and substrate layers. The best performance surfaces consisted of amorphous silicon coating and an inorganic-organic hybrid substrate, with nanopillars and nanopores. These surfaces are used for matrix-free ionization of drugs, peptides and proteins, and for some analytes, the detection limits were in the high attomoles. Microfluidics and laser desorption ionization surfaces are combined on a functionalized drying platforms, where the surface is used to control the shape of the deposited analyte droplet, and the shape of the initial analyte droplet affects the dried droplet solute deposition pattern. The deposited droplets can then directly detected by mass spectrometry. Utilizing this approach, results of analyte concentration, splitting and separation are demonstrated.
Resumo:
There is substantial evidence of the decreased functional capacity, especially everyday functioning, of people with psychotic disorder in clinical settings, but little research about it in the general population. The aim of the present study was to provide information on the magnitude of functional capacity problems in persons with psychotic disorder compared with the general population. It estimated the prevalence and severity of limitations in vision, mobility, everyday functioning and quality of life of persons with psychotic disorder in the Finnish population and determined the factors affecting them. This study is based on the Health 2000 Survey, which is a nationally representative survey of 8028 Finns aged 30 and older. The psychotic diagnoses of the participants were assessed in the Psychoses of Finland survey, a substudy of Health 2000. The everyday functioning of people with schizophrenia is studied widely, but one important factor, mobility has been neglected. Persons with schizophrenia and other non-affective psychotic disorders, but not affective psychoses had a significantly increased risk of having both self-reported and test-based mobility limitations as well as weak handgrip strength. Schizophrenia was associated independently with mobility limitations even after controlling for lifestyle-related factors and chronic medical conditions. Another significant factor associated with problems in everyday functioning in participants with schizophrenia was reduced visual acuity. Their vision was examined significantly less often during the five years before the visual acuity measurement than the general population. In general, persons with schizophrenia and other non-affective psychotic disorder had significantly more limitations in everyday functioning, deficits in verbal fluency and in memory than the general population. More severe negative symptoms, depression, older age, verbal memory deficits, worse expressive speech and reduced distance vision were associated with limitations in everyday functioning. Of all the psychotic disorders, schizoaffective disorder was associated with the largest losses of quality of life, and bipolar I disorder with equal or smaller losses than schizophrenia. However, the subjective loss of qualify of life associated with psychotic disorders may be smaller than objective disability, which warrants attention. Depressive symptoms were the most important determinant of poor quality of life in all psychotic disorders. In conclusion, subjects with psychotic disorders need regular somatic health monitoring. Also, health care workers should evaluate the overall quality of life and depression of subjects with psychotic disorders in order to provide them with the basic necessities of life.
Resumo:
The designing of effective intervention tools to improve immigrants’ labor market integration remains an important topic in contemporary Western societies. This study examines whether and how a new intervention tool, Working Life Certificate (WLC), helps unemployed immigrants to find employment and strengthen their belief of their vocational skills. The study is based on quantitative longitudinal survey data from 174 unemployed immigrants of various origins who participated in the pilot phase of WLC examinations in 2009. Surveys were administered in three waves: before the test, right after it, and three months later. Although it is often argued that the unemployment among immigrants is due either to their lack of skills and cultural differences or to discrimination in recruitment, scholars within social psychology of behavior change argue that the best way of helping people to achieve their goals (e.g. finding employment) is to build up their sense of self-efficacy, alter their outcome expectances in a more positive direction or to help them to construct more detailed action and coping plans. This study aims to shed light on the role of these concepts in immigrants’ labor market integration. The results support the theories of behavior change moderately. Having positive expectances regarding the outcomes of various job search behaviors was found to predict employment in the future. Together with action and coping planning it also predicted increase in job search behavior. The intervention, WLC, was able to affect participants’ self-efficacy, but contrary to expectations, self-efficacy was found not to be related to either job search behavior or future labor market status. Also, perceived discrimination did not explain problems in finding employment, but hints of subtle or structural discrimination were found. Adoption of Finnish work culture together with strong family culture was found to predict future employment. Hence, in this thesis I argue that awarding people diplomas should be preferred in immigrant integration training as it strengthens people’s sense of self-efficacy. Instead of teaching new information, more attention should be directed at changing people’s outcome expectances in a more positive direction and helping them to construct detailed plans on how to achieve their goals.
Resumo:
Though many studies have examined post-acquisition integration challenges, they have mainly focused on rationalistic explanations for the difficulties encountered in post-acquisition integration. There remains little knowledge of how the ‘irrational’ features of post-acquisition decision-making may impede organizational integration. This study attempts to bridge that gap by examining post-acquisition decision-making from a sensemaking perspective. The paper presents an in-depth analysis of a merger between a large Finnish furniture manufacturer and three smaller Swedish furniture companies. By focusing on the sensemaking processes surrounding integration issues, we uncover four interrelated tendencies that illuminate why the frequent problem of slow progress during post-acquisition integration occurs: inherent ambiguity concerning integration issues; cultural confusion in social interaction and communication; organizational hypocrisy in integration decision-making; and the politicization of integration issues.
Resumo:
Gene expression is one of the most critical factors influencing the phenotype of a cell. As a result of several technological advances, measuring gene expression levels has become one of the most common molecular biological measurements to study the behaviour of cells. The scientific community has produced enormous and constantly increasing collection of gene expression data from various human cells both from healthy and pathological conditions. However, while each of these studies is informative and enlighting in its own context and research setup, diverging methods and terminologies make it very challenging to integrate existing gene expression data to a more comprehensive view of human transcriptome function. On the other hand, bioinformatic science advances only through data integration and synthesis. The aim of this study was to develop biological and mathematical methods to overcome these challenges and to construct an integrated database of human transcriptome as well as to demonstrate its usage. Methods developed in this study can be divided in two distinct parts. First, the biological and medical annotation of the existing gene expression measurements needed to be encoded by systematic vocabularies. There was no single existing biomedical ontology or vocabulary suitable for this purpose. Thus, new annotation terminology was developed as a part of this work. Second part was to develop mathematical methods correcting the noise and systematic differences/errors in the data caused by various array generations. Additionally, there was a need to develop suitable computational methods for sample collection and archiving, unique sample identification, database structures, data retrieval and visualization. Bioinformatic methods were developed to analyze gene expression levels and putative functional associations of human genes by using the integrated gene expression data. Also a method to interpret individual gene expression profiles across all the healthy and pathological tissues of the reference database was developed. As a result of this work 9783 human gene expression samples measured by Affymetrix microarrays were integrated to form a unique human transcriptome resource GeneSapiens. This makes it possible to analyse expression levels of 17330 genes across 175 types of healthy and pathological human tissues. Application of this resource to interpret individual gene expression measurements allowed identification of tissue of origin with 92.0% accuracy among 44 healthy tissue types. Systematic analysis of transcriptional activity levels of 459 kinase genes was performed across 44 healthy and 55 pathological tissue types and a genome wide analysis of kinase gene co-expression networks was done. This analysis revealed biologically and medically interesting data on putative kinase gene functions in health and disease. Finally, we developed a method for alignment of gene expression profiles (AGEP) to perform analysis for individual patient samples to pinpoint gene- and pathway-specific changes in the test sample in relation to the reference transcriptome database. We also showed how large-scale gene expression data resources can be used to quantitatively characterize changes in the transcriptomic program of differentiating stem cells. Taken together, these studies indicate the power of systematic bioinformatic analyses to infer biological and medical insights from existing published datasets as well as to facilitate the interpretation of new molecular profiling data from individual patients.
Resumo:
Ewing sarcoma is an aggressive and poorly differentiated malignancy of bone and soft tissue. It primarily affects children, adolescents, and young adults, with a slight male predominance. It is characterized by a translocation between chromosomes 11 and 22 resulting in the EWSR1-FLI1fusion transcription factor. The aim of this study is to identify putative Ewing sarcoma target genes through an integrative analysis of three microarray data sets. Array comparative genomic hybridization is used to measure changes in DNA copy number, and analyzed to detect common chromosomal aberrations. mRNA and miRNA microarrays are used to measure expression of protein-coding and miRNA genes, and these results integrated with the copy number data. Chromosomal aberrations typically contain also bystanders in addition to the driving tumor suppressor and oncogenes, and integration with expression helps to identify the true targets. Correlation between expression of miRNAs and their predicted target mRNAs is also evaluated to assess the results of post-transcriptional miRNA regulation on mRNA levels. The highest frequencies of copy number gains were identified in chromosome 8, 1q, and X. Losses were most frequent in 9p21.3, which also showed an enrichment of copy number breakpoints relative to the rest of the genome. Copy number losses in 9p21.3 were found have a statistically significant effect on the expression of MTAP, but not on CDKN2A, which is a known tumor-suppressor in the same locus. MTAP was also down-regulated in the Ewing sarcoma cell lines compared to mesenchymal stem cells. Genes exhibiting elevated expression in association with copy number gains and up-regulation compared to the reference samples included DCAF7, ENO2, MTCP1, andSTK40. Differentially expressed miRNAs were detected by comparing Ewing sarcoma cell lines against mesenchymal stem cells. 21 up-regulated and 32 down-regulated miRNAs were identified, includingmiR-145, which has been previously linked to Ewing sarcoma. The EWSR1-FLI1 fusion gene represses miR-145, which in turn targets FLI1 forming a mutually repressive feedback loop. In addition higher expression linked to copy number gains and compared to mesenchymal stem cells, STK40 was also found to be a target of four different miRNAs that were all down-regulated in Ewing sarcoma cell lines compared to the reference samples. SLCO5A1 was identified as the only up-regulated gene within a frequently gained region in chromosome 8. This region was gained in over 90 % of the cell lines, and also with a higher frequency than the neighboring regions. In addition, SLCO5A1 was found to be a target of three miRNAs that were down-regulated compared to the mesenchymal stem cells.
Resumo:
The work presented here has focused on the role of cation-chloride cotransporters (CCCs) in (1) the regulation of intracellular chloride concentration within postsynaptic neurons and (2) on the consequent effects on the actions of the neurotransmitter gamma-aminobutyric acid (GABA) mediated by GABAA receptors (GABAARs) during development and in pathophysiological conditions such as epilepsy. In addition, (3) we found that a member of the CCC family, the K-Cl cotransporter isoform 2 (KCC2), has a structural role in the development of dendritic spines during the differentiation of pyramidal neurons. Despite the large number of publications dedicated to regulation of intracellular Cl-, our understanding of the underlying mechanisms is not complete. Experiments on GABA actions under resting steady-state have shown that the effect of GABA shifts from depolarizing to hyperpolarizing during maturation of cortical neurons. However, it remains unclear, whether conclusions from these steady-state measurements can be extrapolated to the highly dynamic situation within an intact and active neuronal network. Indeed, GABAergic signaling in active neuronal networks results in a continuous Cl- load, which must be constantly removed by efficient Cl- extrusion mechanisms. Therefore, it seems plausible to suggest that key parameters are the efficacy and subcellular distribution of Cl- transporters rather than the polarity of steady-state GABA actions. A further related question is: what are the mechanisms of Cl- regulation and homeostasis during pathophysiological conditions such as epilepsy in adults and neonates? Here I present results that were obtained by means of a newly developed method of measurements of the efficacy of a K-Cl cotransport. In Study I, the developmental profile of KCC2 functionality during development was analyzed both in dissociated neuronal cultures and in acute hippocampal slices. A novel method of photolysis of caged GABA in combination with Cl- loading to the somata was used in this study to assess the extrusion efficacy of KCC2. We demonstrated that these two preparations exhibit a different temporal profile of functional KCC2 upregulation. In Study II, we reported an observation of highly distorted dendritic spines in neurons cultured from KCC2-/- embryos. During their development in the culture dish, KCC2-lacking neurons failed to develop mature, mushroom-shaped dendritic spines but instead maintained an immature phenotype of long, branching and extremely motile protrusions. It was shown that the role of KCC2 in spine maturation is not based on its transport activity, but is mediated by interactions with cytoskeletal proteins. Another important player in Cl- regulation, NKCC1 and its role in the induction and maintenance of native Cl- gradients between the axon initial segment (AIS) and soma was the subject of Study III. There we demonstrated that this transporter mediates accumulation of Cl- in the axon initial segment of neocortical and hippocampal principal neurons. The results suggest that the reversal potential of the GABAA response triggered by distinct populations of interneurons show large subcellular variations. Finally, a novel mechanism of fast post-translational upregulation of the membrane-inserted, functionally active KCC2 pool during in-vivo neonatal seizures and epileptiform-like activity in vitro was identified and characterized in Study IV. The seizure-induced KCC2 upregulation may act as an intrinsic antiepileptogenic mechanism.
Resumo:
This study is about the challenges of learning in the creation and implementation of new sustainable technologies. The system of biogas production in the Programme of Sustainable Swine Production (3S Programme) conducted by the Sadia food processing company in Santa Catarina State, Brazil, is used as a case example for exploring the challenges, possibilities and obstacles of learning in the use of biogas production as a way to increase the environmental sustainability of swine production. The aim is to contribute to the discussion about the possibilities of developing systems of biogas production for sustainability (BPfS). In the study I develop hypotheses concerning the central challenges and possibilities for developing systems of BPfS in three phases. First, I construct a model of the network of activities involved in the BP for sustainability in the case study. Next, I construct a) an idealised model of the historically evolved concepts of BPfS through an analysis of the development of forms of BP and b) a hypothesis of the current central contradictions within and between the activity systems involved in BP for sustainability in the case study. This hypothesis is further developed through two actual empirical analyses: an analysis of the actors senses in taking part in the system, and an analysis of the disturbance processes in the implementation and operation of the BP system in the 3S Programme. The historical analysis shows that BP for sustainability in the 3S Programme emerged as a feasible solution for the contradiction between environmental protection and concentration, intensification and specialisation in swine production. This contradiction created a threat to the supply of swine to the food processing company. In the food production activity, the contradiction was expressed as a contradiction between the desire of the company to become a sustainable company and the situation in the outsourced farms. For the swine producers the contradiction was expressed between the contradictory rules in which the market exerted pressure which pushed for continual increases in scale, specialisation and concentration to keep the production economically viable, while the environmental rules imposed a limit to this expansion. Although the observed disturbances in the biogas system seemed to be merely technical and localised within the farms, the analysis proposed that these disturbances were formed in and between the activity systems involved in the network of BPfS during the implementation. The disturbances observed could be explained by four contradictions: a) contradictions between the new, more expanded activity of sustainable swine production and the old activity, b) a contradiction between the concept of BP for carbon credits and BP for local use in the BPfS that was implemented, c) contradictions between the new UNFCCC1 methodology for applying for carbon credits and the small size of the farms, and d) between the technologies of biogas use and burning available in the market and the small size of the farms. The main finding of this study relates to the zone of proximal development (ZPD) of the BPfS in Sadia food production chain. The model is first developed as a general model of concepts of BPfS and further developed here to the specific case of the BPfS in the 3S Programme. The model is composed of two developmental dimensions: societal and functional integration. The dimension of societal integration refers to the level of integration with other activities outside the farm. At one extreme, biogas production is self-sufficient and highly independent and the products of BP are consumed within the farm, while at the other extreme BP is highly integrated in markets and networks of collaboration, and BP products are exchanged within the markets. The dimension of functional integration refers to the level of integration between products and production processes so that economies of scope can be achieved by combining several functions using the same utility. At one extreme, BP is specialised in only one product, which allows achieving economies of scale, while at the other extreme there is an integrated production in which several biogas products are produced in order to maximise the outcomes from the BP system. The analysis suggests that BP is moving towards a societal integration, towards the market and towards a functional integration in which several biogas products are combined. The model is a hypothesis to be further tested through interventions by collectively constructing the new proposed concept of BPfS. Another important contribution of this study refers to the concept of the learning challenge. Three central learning challenges for developing a sustainable system of BP in the 3S Programme were identified: 1) the development of cheaper and more practical technologies of burning and measuring the gas, as well as the reduction of costs of the process of certification, 2) the development of new ways of using biogas within farms, and 3) the creation of new local markets and networks for selling BP products. One general learning challenge is to find more varied and synergic ways of using BP products than solely for the production of carbon credits. Both the model of the ZPD of BPfS and the identified learning challenges could be used as learning tools to facilitate the development of biogas production systems. The proposed model of the ZPD could be used to analyse different types of agricultural activities that face a similar contradiction. The findings could be used in interventions to help actors to find their own expansive actions and developmental projects for change. Rather than proposing a standardised best concept of BPfS, the idea of these learning tools is to facilitate the analysis of local situations and to help actors to make their activities more sustainable.
Resumo:
Traumatic brain injury (TBI) affects people of all ages and is a cause of long-term disability. In recent years, the epidemiological patterns of TBI have been changing. TBI is a heterogeneous disorder with different forms of presentation and highly individual outcome regarding functioning and health-related quality of life (HRQoL). The meaning of disability differs from person to person based on the individual s personality, value system, past experience, and the purpose he or she sees in life. Understanding of all these viewpoints is needed in comprehensive rehabilitation. This study examines the epidemiology of TBI in Finland as well as functioning and HRQoL after TBI, and compares the subjective and objective assessments of outcome. The frame of reference is the International Classification of Functioning, Disability and Health (ICF). The subjects of Study I represent the population of Finnish TBI patients who experienced their first TBI between 1991 and 2005. The 55 Finnish subjects of Studies II and IV participated in the first wave of the international Quality of life after brain injury (QOLIBRI) validation study. The 795 subjects from six language areas of Study III formed the second wave of the QOLIBRI validation study. The average annual incidence of Finnish hospitalised TBI patients during the years 1991-2005 was 101:100 000 in patients who had TBI as the primary diagnosis and did not have a previous TBI in their medical history. Males (59.2%) were at considerably higher risk of getting a TBI than females. The most common external cause of the injury was falls in all age groups. The number of TBI patients ≥ 70 years of age increased by 59.4% while the number of inhabitants older than 70 years increased by 30.3% in the population of Finland during the same time period. The functioning of a sample of 55 persons with TBI was assessed by extracting information from the patients medical documents using the ICF checklist. The most common problems were found in the ICF components of Body Functions (b) and Activities and Participation (d). HRQoL was assessed with the QOLIBRI which showed the highest level of satisfaction on the Emotions, Physical Problems and Daily Life and Autonomy scales. The highest scores were obtained by the youngest participants and participants living independently without the help of other people, and by people who were working. The relationship between the functional outcome and HRQoL was not straightforward. The procedure of linking the QOLIBRI and the GOSE to the ICF showed that these two outcome measures cover the relevant domains of TBI patients functioning. The QOLIBRI provides the patients subjective view, while the GOSE summarises the objective elements of functioning. Our study indicates that there are certain domains of functioning that are not traditionally sufficiently documented but are important for the HRQoL of persons with TBI. This was the finding especially in the domains of interpersonal relationships, social and leisure activities, self, and the environment. Rehabilitation aims to optimize functioning and to minimize the experience of disability among people with health conditions, and it needs to be based on a comprehensive understanding of human functioning. As an integrative model, the ICF may serve as a frame of reference in achieving such an understanding.
Resumo:
Neurofibromatosis 2 (NF2) is an autosomal dominant disorder manifested by the formation of multiple benign tumors of the nervous system. Affected individuals typically develop bilateral vestibular schwannomas which lead to deafness and balance disorders. The syndrome is caused by inactivation of the NF2 tumor suppressor gene, and mutation or loss of the NF2 product, merlin, is sufficient for tumorigenesis in both hereditary and sporadic NF2-associated tumors. Merlin belongs to the band 4.1 superfamily of cytoskeletal proteins, which also contain the related ezrin, radixin, and moesin (ERM) proteins. The ERM members provide a link between the cell cytoskeleton and membrane by connecting membrane-associated proteins to actin filaments. By stabilizing complexes in the cell cortex, the ERMs modulate morphology, growth, and migration of cells. Despite their structural homology, overlapping subcellular distribution, direct molecular association, and partial overlap of molecular interactions, merlin and ezrin exert opposite effects on cell proliferation. Merlin suppresses cell proliferation, whereas ezrin expression is linked to oncogenic activity. We hypothesized that the regions which differ between the proteins might explain merlin s specificity as a tumor suppressor. We therefore analyzed the regions, which are most diverse between merlin and ezrin; the N-terminal tail and the C-terminus. To determine the properties of the C-terminal region, we studied the two most predominant merlin isoforms together with truncation variants similar to those found in patients. We also focused on the evolutionally conserved C-terminal residues, E545-E547, that harbor disease causing mutations in its corresponding DNA sequence. In addition to inhibiting cell proliferation, merlin regulates cytoskeletal organization. The morphogenic properties of merlin may play a role in tumor suppression, since patient-derived tumor cells demonstrate cytoskeletal abnormalities. We analyzed the mechanisms of merlin-induced extension formation and determined that the C-terminal region of amino acids 538-568 is particularly important for the morphogenic activity. We also characterized the role of C-terminal merlin residues in the regulation of proliferation, phosphorylation, and intramolecular associations. In contrast to previous reports, we demonstrated that both merlin isoforms are able to suppress cell proliferation, whereas C-terminally mutated merlin constructs showed reduced growth inhibition. Phosphorylation serves as a mechanism to regulate the tumor suppressive activity of merlin. The C-terminal serine 518 is phosphorylated in response to both p21-activated kinase (PAK) and protein kinase A (PKA), which inactivates the growth inhibitory function of merlin. However, at least three differentially phosphorylated forms of the protein exist. In this study we demonstrated that also the N-terminus of merlin is phosphorylated by AGC kinases, and that both PKA and Akt phosphorylate merlin at serine 10 (S10). We evaluated the impact of this N-terminal tail phosphorylation, and showed that the phosphorylation state of S10 is an important regulator of merlin s ability to modulate cytoskeletal organization but also regulates the stability of the protein. In summary, this study describes the functional effect of merlin specific regions. We demonstrate that both S10 in the N-terminal tail and residues E545-E547 in the C-terminus are essential for merlin activity and function.